ContextAccurate glucagon level measurements are necessary for investigation of mechanisms for postprandial hyperglycemia in type 2 diabetes.ObjectiveTo evaluate the accuracy of postprandial glucagon level measurements using a sandwich ELISA vs a recently established liquid chromatography-high resolution mass spectrometry (LC-HRMS) method in type 2 diabetes mellitus.Design and ParticipantsTwenty patients with type 2 diabetes treated with insulin underwent a meal test before and after administration of the dipeptidyl peptidase-4 inhibitor anagliptin for 4 weeks. Blood samples were taken serially after the meal, and glucagon levels were measured using both ELISA and LC-HRMS. We compared the change from baseline to 4 weeks (Δ0–4W) using the area under the curve for plasma glucagon during the meal test [area under the curve (AUC)0–3h] measured using ELISA and LC-HRMS.ResultsELISA-based glucagon AUC0–3h was higher than LC-HRMS–based AUC0–3h at baseline and 4 weeks. However, differences in Δ0–4W-AUC0–3h measured using ELISA and LC-HRMS were not statistically significant. Additionally, Δ0–4W-AUC0–3h measured using ELISA and LC-HRMS were strongly correlated (r = 0.87, P < 0.001).ConclusionsPlasma glucagon levels during a meal test in patients with type 2 diabetes measured using ELISA were consistently higher than those measured using LC-HRMS. However, given that the changes in glucagon levels measured using ELISA before and after dipeptidyl peptidase-4 inhibitor therapy were similar to those based on LC-HRMS, this ELISA seems to be useful for evaluating the effect of the drug interventions on postprandial glucagon levels.
Aims/Introduction
In Japan, an insulin pump with predictive low‐glucose management (PLGM) was launched in 2018. It automatically suspends insulin delivery when the sensor detects or predicts low glucose values. The aim of this study was to analyze the safety and efficacy of PLGM in patients treated in a Japanese center.
Materials and Methods
We carried out a retrospective observational analysis of 16 patients with type 1 diabetes mellitus and one patient after pancreatectomy. They switched from the MiniMed 620G device to the 640G device with PLGM. The primary outcome was the change in the percentage of time in hypoglycemia. The secondary outcome was the change in HbA1c (%) over a period of 3 months. We also explored the presence of “post‐suspend hyperglycemia” with the 640G device.
Results
After changing to the 640G device, the percentage of time in hypoglycemia (glucose <50 mg/dL) significantly decreased from 0.39% (0–1.51%) to 0% (0–0.44%;
P
= 0.0407). The percentage of time in hyperglycemia (glucose >180 mg/dL) significantly increased from 25.53% (15.78–44.14%) to 32.9% (24.71–45.49%;
P
= 0.0373). HbA1c significantly increased from 7.6 ± 1.0% to 7.8 ± 1.1% (
P
= 0.0161). From 1.5 to 4.5 h after the resumption of insulin delivery, the percentage of time in hyperglycemia was 32.23% (24.2–53.75%), but it was significantly lower, 2.78% (0–21.6%), when patients manually restarted the pump within 30 min compared with automatic resumption 31.2% (20–61.66%;
P
= 0.0063).
Conclusions
Predictive low‐glucose management is an effective tool for reducing hypoglycemia, but possibly elicits “post‐suspend hyperglycemia.” This information is useful for achieving better blood glucose control in the patients treated with PLGM.
This study aims to investigate six food additives (octanoic acid, decanoic acid, acesulfame K, aspartame, saccharin, and sucralose) used in foods for the elderly or people with dysphagia because of the effect of these food additives on Porphyromonas gingivalis (P. gingivalis), which is a keystone pathogen of periodontal diseases. The growth of P. gingivalis was inhibited by 5 mM octanoic acid, 1.25 mM decanoic acid, 1.25% acesulfame K, 0.0625% aspartame, 0.03125% saccharin, and 0.625% sucralose. In addition, these food additives showed bactericidal activity for planktonic P. gingivalis (5 mM octanoic acid, 5 mM decanoic acid, 0.25% aspartame, 0.25% saccharin, and 5% sucralose). Moreover, biofilm formation was inhibited by 10 mM octanoic acid, 10 mM decanoic acid, 10% acesulfame K, 0.35% aspartame, 0.5% saccharin, and 7.5% sucralose. Moreover, the same concentration of these food additives without aspartame killed P. gingivalis in the biofilm. Aspartame and sucralose did not show cytotoxicity to human cell lines at concentrations that affected P. gingivalis. These findings may be useful in clarifying the effects of food additives on periodontopathogenic bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.