Pancreatic β cells secrete insulin in response to glucose levels and thus are involved in controlling blood glucose levels. A line of pancreatic β cells "MIN6" has been used in studies related to the function of β cells and diabetes therapy. Regulating gene expression in MIN6 cells could accelerate these studies, but an efficient method for the transfection of nucleic acids targeted to MIN6 cells is required. We report here on a liposome-based carrier targeted to pancreatic β cells (Multifunctional envelope-type nano device for pancreatic β cells, β-MEND). We identified a lipid composition for use in preparing the β-MEND, which permits the particles to be efficiently internalized into MIN6, as evidenced by flow cytometry analyses. Intracellular observation by confocal laser scanning microscopy showed that the β-MEND efficiently delivered the oligo nucleic acids to the cytosol of MIN6 cells. Moreover, using a β-MEND encapsulating a 2'-O-Methyl RNA complementary to a microRNA that suppresses insulin secretion, the knockdown of the targeted microRNA and an up-regulation of insulin secretion were observed in MIN6. Thus, the β-MEND holds promise as an efficient system for delivering nucleic acids targeted to MIN6 and can contribute to research and therapy aimed at diabetes.
Patients with type I diabetes, which is caused by the destruction of pancreatic islets, now require regular therapeutic injections of insulin. The use of transgene therapy represents an alternate and potent strategy for the treatment of type I diabetes. However, only a limited number of studies regarding in vivo gene delivery targeting the pancreas and islets have been reported. Here, we report on the possibility of in vivo transgene expression in the pancreas by the intraductal injection of naked plasmid DNA (pDNA). Gene expression activities were detected in the pancreas of mice after the injection of naked pDNA encoding luciferase into the common bile duct. We then investigated the effects of injection dose, volume, and speed on gene delivery and determined the optimal conditions for the delivery of pDNA to the pancreas. Exogenous luciferase mRNA was detected in the pancreatic islets by reverse transcription PCR analysis. Moreover, no injury was detected in the liver, the common bile duct, or the pancreas over time after the injection. These findings indicate that the intraductal injection of naked pDNA promises to be a useful technique for in vivo gene delivery targeted to pancreatic tissue and islets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.