Expansive soil covers large areas in a variety of regions in Jordan which is insufficient to meet the engineering specifications in construction. Phosphogypsum is considered to be the main by-product material which comes from phosphate rock deposits that is available in Jordan. The main purpose of this research is to study the effects of stabilization by phosphogypsum on expansive soil properties. Three Jordanian regions were chosen to represent the expansive soils, Irbid, Madaba, and Abu-Nusire city. Soils were mixed with phosphogypsum at different percentages by dry weight of soil. Some of the representative laboratory tests for swell properties were conducted: grain size distribution, plasticity limits, standard compaction test, swell pressure and others. Laboratory results showed a positive response in the engineering soil properties which were confirmed by the Jordanian specifications for the sub-grade soils which may be used in road and building constructions. A 20% to 30% of phosphogypsum by weight of dry soil was found suitable to improve the engineering soil properties, such as the decrease in clay content and changed in classification from A-7 and A-6 soils to A-6 and A-4 soils, respectively. Field tests on short sections of roadways treated with phosphogypsum under a low to medium sustained traffic are recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.