This paper suggests a new chaos-based color image cipher with an efficient substitution keystream generation strategy. The hyperchaotic Lü system and logistic map are employed to generate the permutation and substitution keystream sequences for image data scrambling and mixing. In the permutation stage, the positions of colored subpixels in the input image are scrambled using a pixel-swapping mechanism, which avoids two main problems encountered when using the discretized version of areapreserving chaotic maps. In the substitution stage, we introduce an efficient keystream generation method that can extract three keystream elements from the current state of the iterative logistic map. Compared with conventional method, the total number of iterations is reduced by 3 times. To ensure the robustness of the proposed scheme against chosen-plaintext attack, the current state of the logistic map is perturbed during each iteration and the disturbance value is determined by plain-pixel values. The mechanism of associating the keystream sequence with plain-image also helps accelerate the diffusion process and increase the degree of randomness of the keystream sequence. Experimental results demonstrate that the proposed scheme has a satisfactory level of security and outperforms the conventional schemes in terms of computational efficiency.
This paper suggests a new fast colour image cipher to meet the increasing demand for secure online image communication applications. Unlike most other existing approaches using a permutation-substitution network, the proposed algorithm consists of only a single substitution part. The keystream sequence is generated from a 4-D hyperchaotic system, whose initial conditions are determined by both the secret key and the SHA-224 cryptographic hash value of the plain-image. Favoured by the avalanche effect of hash functions, totally different keystream sequences will be generated for different images. Consequently, desired diffusion effect can be achieved after only a single round of substitution operation, whereas at least two encryption rounds are required by the state-of-the-art permutation-substitution type image ciphers. We also demonstrate the computational efficiency of the proposed algorithm by comparing it with the AES encryption algorithm. A thorough security analysis is carried out in detail, demonstrating the satisfactory security of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.