The antibacterial effects against Staphylococcus epidermidis of five silver carboxylate complexes with anti-inflammatory ligands were studied in order to analyze and compare them in terms of stability (in solution and after exposure to UV light), and their antibacterial and morphological differences. Four effects of the Ag-complexes were evidenced by transmission electronic microscopy (TEM) and scanning electronic microscopy (SEM): DNA condensation, membrane disruption, shedding of cytoplasmic material and silver compound microcrystal penetration of bacteria. 5-Chlorosalicylic acid (5Cl) and sodium 4-aminosalicylate (4A) were the most effective ligands for synthesizing silver complexes with high levels of antibacterial activity. However, Ag-5Cl was the most stable against exposure UV light (365 nm). Cytotoxic effects were tested against two kinds of eukaryotic cells: murine fibroblast cells (T10 1/2) and human epithelial ovarian cancer cells (A2780). The main objective was to identify changes in their antibacterial properties associated with potential decomposition and the implications for clinical applications.
A new copper (I) complex, [Cu(NN1)2](ClO4), was synthesized, where NN1 was a imine ligand 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one obtained by a derivatization of natural compound coumarin. The structural characterization in solution was done by NMR techniques, UV-Vis and cyclic voltammetry. The potential antibacterial effect of [Cu(NN1)2](ClO4), was assessed for F. psychrophilum isolated 10094. F. psychrophilum is a Gram-negative bacterium which causes diseases such as bacterial cold-water disease and rainbow trout fry syndrome, causing large economic losses in the freshwater salmonid aquaculture industry. This complex show to have antibacterial activity against F. psychrophilum 10094 at non-cytotoxic concentration in cell line derived from trout (F. psychrophilum 10094 IC50 16.0 ± 0.9; RT-GUT IC50 53.0 ± 3.1 µg/mL).
Previously, we reported an in vitro evaluation regarding antibacterial effects against F. psychrophilum by a new Cu (I) complex, [Cu(NN1)2](ClO4). This study presents the results of an in vivo evaluation of [Cu(NN1)2](ClO4) added as a dietary supplement against F. psychrophilum in rainbow trout. The results showed that the administration of [Cu(NN1)2](ClO4) at 29 and 58 µg/g of fish for 15 days does not affect the growth of rainbow trout. On the other hand, the amount of copper present in the liver, intestine, and muscle of rainbow trout was determined. The results showed that the amount of copper in the liver, when compared between treated fish and control fish, does not change. While, in the intestine, an increase in the fish fed at 58 µg/g of fish was observed. In muscle, a slight decrease at 29 µg/g was obtained. Additionally, copper concentrations in the pond water after 15 days of feeding with the [Cu(NN1)2](ClO4) complex showed the highest levels of copper. Finally, the effect of the administration of [Cu(NN1)2](ClO4) for 15 days at 58 µg/g of fish was evaluated against F. psychrophilum, where a 75% survival was obtained during 20 days of challenge.
Biofilm formation in pathogenic bacteria is an important factor of resistance to antimicrobial treatments, allowing them to survive for a long time in their hosts. In the search for new antibiofilm agents, in this work we report the activity of a copper (I) complex, [Cu(NN1)2]ClO4, synthesized with Cu (I) and NN1, an imine ligand 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one, a derivate of natural compound coumarin. The antibacterial and antibiofilm capacity was evaluated in Vibrio harveyi BB170 used as model bacteria. Antibacterial activity was measured in vitro by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and half-maximal inhibitory concentration (IC50) determination. Antibiofilm capacity of copper (I) complex was analyzed by different concentrations of IC50 values. The results showed that the sub-IC50 concentration, 12.6 µg/mL of the copper (I) complex, was able to reduce biofilm formation by more than 75%, and bacterial viability was reduced by 50%. Inverted and confocal laser scanning microscopy showed that the [Cu(NN1)2]ClO4 complex affected the biofilm structure. Therefore, the copper (I) complex is effective as an antibiofilm compound in V. harveyi BB170.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.