A previsão de vazões médias mensais é um insumo fundamental para o planejamento da operação das usinas hidrelétricas do Sistema Interligado Nacional (SIN). Durante os últimos anos, diferentes modelos baseados em inteligência computacional têm sido sugeridos para esse problema. A principal contribuição desta dissertação é o desenvolvimento de um sistema de suporte para a previsão e geração de séries sintéticas de vazões mensais, necessárias para o planejamento da operação das usinas do SIN. Este sistema permite analisar o desempenho de modelos clássicos de geração de séries sintéticas e de previsão de vazões, permitindo comparações entre um conjunto específico de modelos clássicos de séries temporais e de inteligência computacional para todas as usinas hidrelétricas do SIN.Palavras-chave: Previsão de vazões, geração de séries sintéticas, vazões mensais, sistema de suporte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.