BackgroundCoagulation and innate immunity have been linked together for at least 450 million years of evolution. Sepsis, one of the world’s leading causes of death, is probably the condition in which this evolutionary link is more evident. However, the biological and the clinical relevance of this association have only recently gained the attention of the scientific community.DiscussionDuring sepsis, the host response to a pathogen is invariably associated with coagulation activation. For several years, coagulation activation has been solely regarded as a mechanism of tissue damage, a concept that led to several clinical trials of anticoagulant agents for sepsis. More recently, this paradigm has been challenged by the failure of these clinical trials, and by a growing bulk of evidence supporting the concept that coagulation activation is beneficial for pathogen clearance. In this article we discuss recent basic and clinical data that point to a more balanced view of the detrimental and beneficial consequences of coagulation activation in sepsis.SummaryReappraisal of the association between coagulation and immune activation from an evolutionary medicine perspective offers a unique opportunity to gain new insights about the pathogenesis of sepsis, paving the way to more successful approaches in both basic and clinical research in this field.
Despite the detailed characterization of the inflammatory and endothelial changes observed in Sickle Cell Disease (SCD), the hierarchical relationship between elements involved in the pathogenesis of this complex disease is yet to be described. Meta-analyses of gene expression studies from public repositories represent a novel strategy, capable to identify key mediators in complex diseases. We performed several meta-analyses of gene expression studies involving SCD, including studies with patient samples, as well as in-vitro models of the disease. Meta-analyses were performed with the Inmex bioinformatics tool, based on the RankProd package, using raw gene expression data. Functional gene set analysis was performed using more than 60 gene-set libraries. Our results demonstrate that the well-characterized association between innate immunity, hemostasis, angiogenesis and heme metabolism with SCD is also consistently observed at the transcriptomic level, across independent studies. The enrichment of genes and pathways associated with innate immunity and damage repair-associated pathways supports the model of erythroid danger-associated molecular patterns (DAMPs) as key mediators of the pathogenesis of SCD. Our study also generated a novel database of candidate genes, pathways and transcription factors not previously associated with the pathogenesis of SCD that warrant further investigation in models and patients of SCD.
The differential diagnosis of immune (ITP) and hereditary macrothrombocytopenia (HM) is key to patient management. The immature platelet fraction (IPF) represents the subset of circulating platelets with higher RNA content, and has been shown to distinguish hypo- from hyperproliferative thrombocytopenias. Here we evaluated the diagnostic accuracy of IPF in the differential diagnosis between HM and other thrombocytopenias in a population of patients with post-chemotherapy thrombocytopenia (n = 56), bone marrow failure (n = 22), ITP (n = 105) and HM (n = 27). TPO levels were also measured in HM and ITP matched for platelet counts. Platelet counts were similar in all patient groups. Higher IPF values were observed in both ITP (12.3%; 2.4–65.6%) and HM (29.8%; 4.6–65.9%) compared to hypoproliferative thrombocytopenias. IPF values were also higher in HM compared to ITP, yielding a diagnostic accuracy of 0.80 (95%CI 0.70–0.90; P < 0.0001) to distinguish these two conditions. Intra- and inter-assays reproducibility of IPF in HM patients revealed that this is a stable parameter. In conclusion, IPF is increased in HM compared to both ITP and other thrombocytopenias and contributes to the differentiation between ITP and HM. Further studies are warranted to understand the biological rationale of these findings and to its incorporation in diagnostic algorithms of HM.
IntroductionEndothelial barrier breakdown is a hallmark of septic shock, and proteins that physiologically regulate endothelial barrier integrity are emerging as promising biomarkers of septic shock development. Patients with cancer and febrile neutropenia (FN) present a higher risk of sepsis complications, such as septic shock. Nonetheless, these patients are normally excluded or under-represented in sepsis biomarker studies. The aim of our study was to validate the measurement of a panel of microvascular permeability modulators as biomarkers of septic shock development in cancer patients with chemotherapy-associated FN.MethodsThis was a prospective study of diagnostic accuracy, performed in two distinct in-patient units of a university hospital. Levels of vascular endothelial growth factor A (VEGF-A), soluble fms-like tyrosine kinase-1 (sFlt-1) and angiopoietin (Ang) 1 and 2 were measured after the onset of neutropenic fever, in conditions designed to mimic the real-world use of a sepsis biomarker, based on our local practice. Patients were categorized based on the development of septic shock by 28 days as an outcome.ResultsA total of 99 consecutive patients were evaluated in the study, of which 20 developed septic shock and 79 were classified as non-complicated FN. VEGF-A and sFlt-1 levels were similar between both outcome groups. In contrast, Ang-2 concentrations were increased in patients with septic shock, whereas an inverse finding was observed for Ang-1, resulting in a higher Ang-2/Ang-1 ratio in patients with septic shock (5.29, range 0.58 to 57.14) compared to non-complicated FN (1.99, range 0.06 to 64.62; P = 0.01). After multivariate analysis, the Ang-2/Ang-1 ratio remained an independent factor for septic shock development and 28-day mortality.ConclusionsA high Ang-2/Ang-1 ratio can predict the development of septic shock in cancer patients with febrile neutropenia.
Heme has been characterized as potent trigger of inflammation. In hemostasis, although heme has been shown to both induce and inhibit different compartments of hemostasis, its net effect on the hemostatic balance, and the biological relevance of these effects remain to be determined. Herein we evaluated the effect of heme on hemostasis using a global assay able to generate clinically relevant data in several other complex hemostatic diseases. Citrated whole blood samples from healthy participants were stimulated by heme or vehicle and incubated for 4h at 37°C. Rotational thromboelastometry was immediately performed. The participation of tissue factor in coagulation activation was evaluated using inhibitory antibody. Heme was able of inducing ex vivo coagulation activation in whole blood, affecting predominantly parameters associated with the initial phases of clot formation. This activation effect was at least partially dependent on hematopoietic tissue factor, since the effects of heme were partially abrogated by the inhibition of human tissue factor. In conclusion, using a global hemostasis assay, our study confirmed that heme is able to activate coagulation in whole blood, in a tissue factor-dependent way. These findings could explain the disturbance in hemostatic balance observed in conditions associated with the release of heme such as sickle cell disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.