AbstractMajor depressive disorder (MDD) and bipolar disorder (BD) are among the leading causes of burden and disability worldwide. Despite intensified research efforts to improve the treatment options and remission rates in mood disorders, no disease modifying treatment exists for these disorders. Accumulating evidence implicates the involvement of the gut microbiota in processes relevant to etiopathology of central nervous system-based disorders. The objective of this article was to critically evaluate the evidence supporting the link between gastrointestinal microbiota and mood disorders and to discuss the potential benefits of using probiotics in the treatment of MDD and BD. The concept of psychobiotics, which is bacterial-based interventions with mental health benefit, is emerging in the field. On the other hand, while probiotics might potentially represent a significant advance, specific roles of microbiota in the pathophysiology of mood disorders still need further investigation along with intervention studies.
BackgroundThe objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics.MethodsMetabolomic profiling, employing 1H-NMR, 1H-NMR T2-edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed.ResultsThe investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-l-phenyl alanine, N-acetyl-l-aspartyl-l-glutamic acid, l-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology.ConclusionsThe strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.Electronic supplementary materialThe online version of this article (doi:10.1186/s40345-017-0088-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.