Some fibroblast growth factors (FGFs) affect ovarian follicle cell growth and/or differentiation. Whereas many FGFs activate several FGF receptors, FGF7 and FGF10 primarily activate only one, FGFR2B. As FGF7 is produced by bovine theca cells and acts on granulosa cells, we tested the hypothesis that FGF10 may also play a role in folliculogenesis in cattle. Reverse transcription-polymerase chain reaction demonstrated the presence of FGF10 mRNA in the oocytes and theca cells of the antral follicles, as well as in the preantral follicles. FGF10 protein was detected by immunohistochemistry in the oocytes of the preantral and antral follicles, and in the granulosa and theca cells of the antral follicles. FGF10 expression in theca cells changed during follicle development; mRNA abundance decreased with increasing follicular estradiol concentration in healthy follicles, and was lowest in highly atretic follicles. Culturing of granulosa cells in serum-free medium revealed FSH regulation of FGF10 receptor expression. The addition of FGF10 to cultured granulosa cells decreased the level of estradiol but did not alter cell proliferation. These data support a role for FGF10 in signaling to granulosa cells from theca cells and/or the oocyte.
In cattle, most evidence suggests that granulosa cells express LH receptors (LHR) after (or as) the follicle becomes dominant, however there is some suggestion that granulosa cells from smaller pre-dominant follicles may express several LHR mRNA splice variants. The objective of this study was to measure LHR expression in bovine follicles of defined size and steroidogenic ability, and in granulosa cells from small follicles (<6 mm diameter) undergoing differentiation in vitro. Semiquantitative RT-PCR demonstrated that LHR mRNA was undetectable in granulosa cells of follicles <7 mm diameter (nondominant follicles), and increased with follicle diameter in follicles >7 mm diameter. Splice variants with deletions of exon 10 and part of exon 11 were detected as previously described, and we detected a novel splice variant with a deletion of exon 3. Cultured granulosa cells contained LHR mRNA, but with significantly greater amounts of variants with deletions of exon 10 and/or exon 11 compared with cells from dominant follicles. FSH increased the abundance of some but not all LHR mRNA splice variants in cultured granulosa cells. The addition of LH to cultured cells did not increase progesterone secretion, despite the presence of LHR mRNA. Collectively, these data suggest that granulosa cells do not acquire functional LHR until follicle dominance occurs.
Paracrine cell signaling is believed to be important for ovarian follicle development, and a role for some members of the fibroblast growth factor (FGF) family has been suggested. In the present study, we tested the hypothesis that FGF-8 and its cognate receptors (FGFR3c and FGFR4) are expressed in bovine antral follicles. RT-PCR was used to analyze bovine Fgf8, Fgfr3c and Fgfr4 mRNA levels in oocytes, and granulosa and theca cells. Fgf8 expression was detected in oocytes and in granulosa and theca cells; this expression pattern differs from that reported in rodents. Granulosa and theca cells, but not oocytes, expressed Fgfr3c, and expression in granulosa cells increased significantly with follicle estradiol content, a major indicator of follicle health. Fgfr4 expression was restricted to theca cells in the follicle, and decreased significantly with increasing follicle size. To investigate the potential regulation of Fgfr3c expression in the bovine granulosa, cells were cultured in serum-free medium with FSH or IGF-I; gene expression was upregulated by FSH but not by IGF-I. The FSH-responsive and developmentally regulated patterns of Fgfr3c mRNA expression suggest that this receptor is a potential mediator of paracrine signaling to granulosa cells during antral follicle growth in cattle. IntroductionAntral ovarian follicle growth in monovular species is regulated by a number of factors, the most well known of which are the gonadotropins. Follicles are considered to be follicle-stimulating hormone (FSH)-dependent until dominance occurs, after which they become luteinizing hormone-dependent (reviewed by Fortune et al. 2001, Ginther et al. 2001. It has also become clear that growth factors are key stimulatory/regulatory molecules. Several lines of evidence point to a critical role for members of the transforming growth factor-b (TGF-b) superfamily, especially growth/differentiation factor 9 and bone morphogenetic protein 15 (reviewed by Gilchrist et al. 2004, Juengel et al. 2004, Shimasaki et al. 2004.The fibroblast growth factor (FGF) family is emerging as a group of factors that are potentially important for follicle growth. For example, FGF-7 is expressed in theca cells, its receptor is expressed in granulosa cells (Parrott & Skinner 1998, Berisha et al. 2004, and FGF-7 stimulated bovine granulosa cell proliferation and inhibited steroidogenesis (Parrott & Skinner 1998). Another potentially interesting member of this family is FGF-8. Widely expressed in fetal tissues, this factor is predominantly expressed in the gonads of adult rodents and ruminants (MacArthur et al. 1995a, Buratini et al. 2005. Within the ovary, Fgf8 gene expression occurs only in the oocyte in adult mice (Valve et al. 1997), which suggests a potential role in signaling of follicular cells by the oocyte.There are five known FGF receptor (FGFR) genes (Kim et al. 2001, Sleeman et al. 2001, of which FGF-8 preferentially activates FGFR4 and the 'c' splice form of FGFR3 (Ornitz et al. 1996). mRNAs encoding Fgfr4 or Fgfr3c were not consiste...
STUDY QUESTION What are the chances of obtaining a healthy transferable cleavage-stage embryo according to the number of mature oocytes in fragile X mental retardation 1 (FMR1)-mutated or premutated females undergoing preimplantation genetic testing (PGT)? SUMMARY ANSWER In our population, a cycle with seven or more mature oocytes has an 83% chance of obtaining one or more healthy embryos. WHAT IS KNOWN ALREADY PGT may be an option to achieve a pregnancy with a healthy baby for FMR1 mutation carriers. In addition, FMR1 premutation is associated with a higher risk of diminished ovarian reserve and premature ovarian failure. The number of metaphase II (MII) oocytes needed to allow the transfer of a healthy embryo following PGT has never been investigated. STUDY DESIGN, SIZE, DURATION The study is a monocentric retrospective observational study carried out from January 2006 to January 2020 that is associated with a case-control study and that analyzes 38 FMR1 mutation female carriers who are candidates for PGT; 16 carried the FMR1 premutation and 22 had the full FMR1 mutation. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 95 controlled ovarian stimulation (COS) cycles for PGT for fragile X syndrome were analyzed, 49 in premutated patients and 46 in fully mutated women. Only patients aged ≤38 years with anti-Müllerian hormone (AMH) >1 ng/ml and antral follicle count (AFC) >10 follicles were eligible for the PGT procedure. Each COS cycle of the FMR1-PGT group was matched with the COS cycles of partners of males carrying any type of translocation (ratio 1:3). Conditional logistic regression was performed to compare the COS outcomes. We then estimated the number of mature oocytes needed to obtain at least one healthy embryo after PGT using receiver operating characteristic curve analysis. MAIN RESULTS AND THE ROLE OF CHANCE Overall, in the FMR1-PGT group, the median number of retrieved and mature oocytes per cycle was 11 (interquartile range 7–15) and 9 (6–12), respectively. The COS outcomes of FMR1 premutation or full mutation female carriers were not altered compared with the matched COS cycles in partners of males carrying a balanced translocation in their karyotype. Among the 6 (4–10) Day 3 embryos obtained in the FMR1-PGT group, a median number of 3 (1–6) embryos were morphologically eligible for biopsy, leading to 1 (1–3) healthy embryo. A cutoff value of seven MII oocytes yielded a sensitivity of 82% and a specificity of 61% of having at least one healthy embryo, whereas a cutoff value of 10 MII oocytes led to a specificity of 85% and improved positive predictive value. LIMITATIONS, REASONS FOR CAUTION This study is retrospective, analyzing a limited number of cycles. Moreover, the patients who were included in a fresh PGT cycle were selected on ovarian reserve parameters and show high values in ovarian reserve tests. This information could influence our conclusion. WIDER IMPLICATIONS OF THE FINDINGS The results relate only to the target population of this study, with a correct ovarian reserve of AMH >1 and AFC >10. However, the information provided herein extends knowledge about the current state of COS for FMR1 mutation carriers in order to provide patients with proper counseling regarding the optimal number of oocytes needed to have a chance of transferring an unaffected embryo following PGT. STUDY FUNDING/COMPETING INTEREST(S) None. TRIAL REGISTRATION NUMBER N/A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.