Microorganisms in marine subsurface sediments substantially contribute to global biomass. Sediments warmer than 40°C account for roughly half the marine sediment volume, but the processes mediated by microbial populations in these hard-to-access environments are poorly understood. We investigated microbial life in up to 1.2-kilometer-deep and up to 120°C hot sediments in the Nankai Trough subduction zone. Above 45°C, concentrations of vegetative cells drop two orders of magnitude and endospores become more than 6000 times more abundant than vegetative cells. Methane is biologically produced and oxidized until sediments reach 80° to 85°C. In 100° to 120°C sediments, isotopic evidence and increased cell concentrations demonstrate the activity of acetate-degrading hyperthermophiles. Above 45°C, populated zones alternate with zones up to 192 meters thick where microbes were undetectable.
No abstract
The microbial communities present in two underground coal mines in the Bowen Basin, Queensland, Australia, were investigated to deduce the effect of pumping and mining on subsurface methanogens and methanotrophs. The micro-organisms in pumped water from the actively mined areas, as well as, pre- and post-mining formation waters were analyzed using 16S rRNA gene amplicon sequencing. The methane stable isotope composition of Bowen Basin coal seam indicates that methanogenesis has occurred in the geological past. More recently at the mine site, changing groundwater flow dynamics and the introduction of oxygen in the subsurface has increased microbial biomass and diversity. Consistent with microbial communities found in other coal seam environments, pumped coal mine waters from the subsurface were dominated by bacteria belonging to the genera Pseudomonas and the family Rhodocyclaceae. These environments and bacterial communities supported a methanogen population, including Methanobacteriaceae, Methanococcaceae and Methanosaeta. However, one of the most ubiquitous micro-organisms in anoxic coal mine waters belonged to the family 'Candidatus Methanoperedenaceae'. As the Archaeal family 'Candidatus Methanoperedenaceae' has not been extensively defined, the one studied species in the family is capable of anaerobic methane oxidation coupled to nitrate reduction. This introduces the possibility that a methane cycle between archaeal methanogenesis and methanotrophy may exist in the anoxic waters of the coal seam after hydrogeological disturbance.
The Coorong Lakes, South Australia, are one of the models for unravelling the ‘Dolomite Problem’. Critically, today only a few modern environments remain where large quantities of very high magnesium calcite (VHMC; Ca0.5Mg0.5CO3; also described as protodolomite or disordered dolomite) and magnesite (MgCO3) precipitate. Previously conducted laboratory studies demonstrate that carbonate minerals can precipitate via classical and non‐classical crystallization pathways. This study uses the preserved crystal sizes, morphologies and microstructures of Ca–Mg carbonates in the Coorong Lakes (Milne Lake, Pellet Lake and North Stromatolite Lake) to evaluate which crystallization pathway most likely occurred. In the fine‐grained sediments of these lakes, very high magnesium calcite and magnesite occur as aggregate particles of nanocrystals (<100 nm). Rietveld refinements using X‐ray diffraction data give modelled Lvol–IB crystallite size values of <120 nm for all carbonates. Transmission electron microscopy shows that, within VHMC and magnesite particles, nanocrystals have an almost identical orientation of their crystal lattice fringes. This is morphologically similar to Ca–Mg carbonates formed via an amorphous carbonate precursor in non‐classical crystallization laboratory experiments. Precipitation of carbonate minerals via an amorphous‐to‐crystalline pathway requires the water to be supersaturated relative to both crystalline and amorphous phases. In the Coorong Lakes, surface water likely only becomes supersaturated relative to amorphous carbonate phases in the late summer after extensive evaporation. Observations suggest that VHMC and dolomite do not directly precipitate from bulk modern seawater, despite oversaturation relative to the crystalline phases, because seawater is undersaturated with respect to amorphous calcium magnesium carbonate, thus limiting the precipitation through a non‐classical crystallization pathway.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.