This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence Newcastle University ePrints -eprint.ncl.ac.uk Yakovleva N, Kotilainen J, Toivakka M. Reflections on the opportunities for mining companies to contribute to the United Nations Sustainable Development Goals in sub -Saharan Africa.
Background: In North Karelia, Finland, the regional electronic health records (EHRs) enable flexible data retrieval and area-level analyses. The aim of this study was to assess the early detection of type 2 diabetes (T2D) in the region and to evaluate the performed activities in order to improve the processes between the years 2012 and 2017. Methods: Patients with T2D were identified from the EHRs using the ICD-10 codes registered during any visit to either primary or specialized care. The prevalence of T2D was calculated for the years 2012, 2015, and 2017 on the municipality level. The number of people found in the EHRs with diabetes was compared with the number found in the national register of medication reimbursement rights. Results: In 2012, the age-adjusted prevalence of T2D in North Karelia varied considerably between municipalities (5.5%-8.6%). These differences indicate variation in the processes of early diagnosis. The findings were discussed in the regional network of health professionals treating patients with T2D, resulting in sharing experiences and best practices. In 2017, the differences had notably diminished, and in most municipalities, the prevalence exceeded 8%. The regional differences in the prevalence and their downward trend were observed both in the EHRs and in the medication reimbursement rights register. Conclusion: Clear differences in the prevalence of T2D were detected between municipalities. After visualizing these differences and providing information for the professionals, the early detection of T2D improved and the regional differences decreased. The EHRs are a valuable data source for knowledge-based management and quality improvement.
BackgroundAssessment of the differences in the outcomes of care by socioeconomic status (SES) is beneficial for both the efficient targeting of health care services and to decrease health inequalities. This study compares the effects of three patient-based SES predictors (earned income, educational attainment, employment status) with three small-area-based SES predictors (median income, educational attainment, proportion of the unemployed) on the treatment outcomes of type 2 diabetes patients.MethodsMixed-effect modeling was applied to analyse how SES factors affect the treatment outcomes of type 2 diabetes patients. The treatment outcomes were assessed by the patients’ latest available glycated hemoglobin A1C (HbA1c) value. We used electronic health records of type 2 diabetes patients from the regional electronic patient database, the patients’ individual register-based SES information from Statistics Finland, and the SES information about the population of the postal code area of the patients from Statistics Finland.ResultsThe effects of attained education on the treatment outcomes, both at the patient-level and the small-area-level are quite similar. Age and male gender were associated with higher HbA1c values and lower education indicated higher HbA1c values. Unemployment was not associated with HbA1c values at either the patient-level or the area-level. Income gave divergent results: high values of HbA1c were associated with low patient incomes but the median income of the postal code area did not predict the treatment outcomes of patients.ConclusionsOur comparative study of three SES factors shows that the effects of attained education on the treatment outcomes are rather similar, regardless of whether patient-based or small-area-based predictors are used. Small-area-based SES variables can be a good way to overcome the absence of individual SES information, but further research is needed to find the valid small-area factors by disease. This possibility of using more small-area-based data would be valuable in health service research and first-hand planning of health care services.
Background: Type 2 diabetes is a major health concern all over the world. The prevention of diabetes is important but so is well-balanced diabetes care. Diabetes care can be influenced by individual and neighborhood socio-economic factors and geographical accessibility to health care services. The aim of the study is to find out whether two different area classifications of urban and rural areas give different area-level results of achieving the targets of control and treatment among type 2 diabetes patients exemplified by a Finnish region. The study exploits geo-referenced patient data from a regional primary health care patient database combined with postal code area-level socio-economic variables, digital road data and two grid based classifications of areas: an urban-rural dichotomy and a classification with seven area types. Methods:The achievement of control and treatment targets were assessed using the patient's individual laboratory data among 9606 type 2 diabetes patients. It was assessed whether hemoglobin A1c (HbA1c) was controlled and whether the recommended level of HbA1c was achieved in patients by different area classes and as a function of distance. Chi square test and logistic regression analysis were used for testing. Results:The study reveals that area-level inequalities exist in the care of type 2 diabetes in a detailed 7-class area classification but if the simple dichotomy of urban and rural is applied differences vanish. The patient's gender and age, area-level education and the area class they belonged to were associated with achievements of control and treatment targets. Longer distance to health care services was not a barrier to good achievements of control or treatment targets. Conclusions:A more detailed grid-based area classification is better for showing spatial differences in the care of type 2 diabetes patients. Inequalities exist but it would be misleading to state that the differences are simply due to urban or rural location or due to distance. From a planning point of view findings suggest that detailed geo-coded patient information could be utilized more in resourcing and targeting the health care services to find the area-level needs of care and to improve the cost-efficient allocation of resources.
Despite comprehensive national treatment guidelines, goals for secondary prevention of coronary heart disease (CHD) have not been sufficiently met everywhere in Finland. We investigated the recorded risk factor rates of CHD and their spatial differences in North Karelia Hospital District, which has a very high cardiovascular burden, in order to form a general view of the state of secondary prevention in a high-risk region. Appropriate disease codes of CHD-diagnoses and coding for percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) were used to identify from the electronic patient records the patient group eligible for secondary prevention. The cumulative incidence rate of new patients (n = 2556) during 2011–2014 varied from 1.9% to 3.5% between municipalities. The success in secondary prevention of CHD was assessed using achievement of treatment targets as defined in national guidelines. Health centres are administrated by municipalities whereupon the main reporting units were municipalities, together with composed classification of patients by age, gender and dwelling location. Health disparities between municipalities, settlement types and patient groups were found and are interpreted. Moreover, spatial high-risk and low-risk clusters of acute CHD were detected. The proportion of patients achieving the treatment targets of low-density lipoprotein cholesterol (LDL-C) varied from 21% to 38% between municipalities. Variation was also observed in the follow-up of patients; e.g., the rate of follow-up measurements of LDL-C in municipalities varied from 72% to 86%. Spatial variation in patients’ sociodemographic and neighbourhood characteristics and morbidity burden partly explain the differences in outcomes, but there are also very likely differences in the care process between municipalities which requires a study in its own right.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.