Stream processing systems (SPSs) have been designed to process data streams in real-time, allowing organizations to analyze and act upon data on-the-fly, as it is generated. However, handling sensitive or personal data in these multilayered SPSs that distribute resources across sensor, fog, and cloud layers raises privacy concerns, as the data may be subject to unauthorized access and attacks that can violate user privacy, hence facing regulations such as the GDPR across the SPS layers. To address these issues, different privacy-preserving mechanisms (PPMs) are proposed to protect user privacy in SPSs. Yet, selecting and applying such PPMs in SPSs is challenging, since they must operate in real-time while tolerating little overhead. The multilayered nature of SPSs complicates privacy protection because each layer may confront different privacy threats, which must be addressed by specific PPMs. To overcome these challenges, we present Prinseps, our comprehensive privacy vision for SPSs. Towards this vision, we (1) identify critical privacy threats on different layers of the multilayered SPS, (2) evaluate the effectiveness of existing PPMs in addressing such threats, and (3) integrate privacy considerations into the decision-making processes of SPSs.
CCS CONCEPTS• Security and privacy → Privacy protections; • Information systems → Stream management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.