We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems.After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.
We study the geometric and topological properties of strange non-chaotic attractors created in non-smooth saddle-node bifurcations of quasiperiodically forced interval maps. By interpreting the attractors as limit objects of the iterates of a continuous curve and controlling the geometry of the latter, we determine their Hausdorff and box-counting dimension and show that these take distinct values. Moreover, the same approach allows to describe the topological structure of the attractors and to prove their minimality.
We study dimensions of strange non-chaotic attractors and their associated physical measures in so-called pinched skew products, introduced by Grebogi and his coworkers in 1984. Our main results are that the Hausdorff dimension, the pointwise dimension and the information dimension are all equal to one, although the box-counting dimension is known to be two. The assertion concerning the pointwise dimension is deduced from the stronger result that the physical measure is rectifiable. Our findings confirm a conjecture by Ding, Grebogi and Ott from 1989.
We study mean equicontinuous actions of locally compact σ-compact amenable groups on compact metric spaces. In this setting, we establish the equivalence of mean equicontinuity and topo-isomorphy to the maximal equicontinuous factor and provide a characterization of mean equicontinuity of an action via properties of its product. This characterization enables us to show the equivalence of mean equicontinuity and the weaker notion of Besicovitch-mean equicontinuity in fairly high generality, including actions of abelian groups as well as minimal actions of general groups. In the minimal case, we further conclude that mean equicontinuity is equivalent to discrete spectrum with continuous eigenfunctions. Applications of our results yield a new class of non-abelian mean equicontinuous examples as well as a characterization of those extensions of mean equicontinuous actions which are still mean equicontinuous.
We study mean equicontinuous actions of locally compact σ-compact amenable groups on compact metric spaces. In this setting, we establish the equivalence of mean equicontinuity and topo-isomorphy to the maximal equicontinuous factor and provide a characterization of mean equicontinuity of an action via properties of its product. This characterization enables us to show the equivalence of mean equicontinuity and the weaker notion of Besicovitch-mean equicontinuity in fairly high generality, including actions of abelian groups as well as minimal actions of general groups. In the minimal case, we further conclude that mean equicontinuity is equivalent to discrete spectrum with continuous eigenfunctions. Applications of our results yield a new class of non-abelian mean equicontinuous examples as well as a characterization of those extensions of mean equicontinuous actions which are still mean equicontinuous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.