High-pressure die compound casting relies on high bond quality, and high thermal contact conductance at the interface is a key issue in the context of cast advanced cooling components, such as lightweight heat sinks for desktop and portable computers. The current study aims at enhancing the thermal contact between a copper insert piece and an AlSi9Cu3(Fe) cast alloy by developing suitable Zn-based coatings, which are used to establish a firm metallurgical bond between the solid insert and the cast alloy during highpressure die-casting. It is demonstrated by microstructural analyses that various phases form at the interfaces in the casting process. As the thermal conductivities of these phases have not been available, these are determined individually using a thermoflash device. The SEM investigations indicate that mainly ternary phases of the type Al x Cu y Zn z emerge in the bonding zone, as the high casting temperatures promote the diffusion of aluminum atoms into the coating. Interestingly, an alloy containing 50 wt% zinc reaches a thermal conductivity as high as 166 W mK À1 . The microstructural characteristic at the interfaces and the ramifications with respect to applications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.