Inflammatory cell infiltration is central to healing after acute myocardial infarction (AMI). The relation of regional inflammation to edema, infarct size (IS), microvascular obstruction (MVO), intramyocardial hemorrhage (IMH), and regional and global LV function is not clear. Here we noninvasively characterized regional inflammation and contractile function in reperfused AMI in pigs using fluorine (19F) cardiovascular magnetic resonance (CMR). Adult anesthetized pigs underwent left anterior descending coronary artery instrumentation with either 90 min occlusion (n = 17) or without occlusion (sham, n = 5). After 3 days, in surviving animals a perfluorooctyl bromide nanoemulsion was infused intravenously to label monocytes/macrophages. At day 6, in vivo 1H-CMR was performed with cine, T2 and T2* weighted imaging, T2 and T1 mapping, perfusion and late gadolinium enhancement followed by 19F-CMR. Pigs were sacrificed for subsequent ex vivo scans and histology. Edema extent was 35 ± 8% and IS was 22 ± 6% of LV mass. Six of ten surviving AMI animals displayed both MVO and IMH (3.3 ± 1.6% and 1.9 ± 0.8% of LV mass). The 19F signal, reflecting the presence and density of monocytes/macrophages, was consistently smaller than edema volume or IS and not apparent in remote areas. The 19F signal-to-noise ratio (SNR) > 8 in the infarct border zone was associated with impaired remote systolic wall thickening. A whole heart value of 19F integral (19F SNR × milliliter) > 200 was related to initial LV remodeling independently of edema, IS, MVO, and IMH. Thus, 19F-CMR quantitatively characterizes regional inflammation after AMI and its relation to edema, IS, MVO, IMH and regional and global LV function and remodeling.
Hepatic and myocardial ectopic lipid deposition has been associated with insulin resistance (IR) and cardiovascular risk. Lipid overload promotes increased hepatic oxidative capacity, oxidative stress, and impaired mitochondrial efficiency, driving the progression of nonalcoholic fatty liver disease (NAFLD). We hypothesized that higher lipid availability promotes ischemia-induced cardiac dysfunction and decreases myocardial mitochondrial efficiency. Mice with adipose tissue–specific overexpression of sterol element–binding protein 1c as model of lipid overload with combined NAFLD-IR and controls underwent reperfused acute myocardial infarcts (AMIs). Whereas indexes of left ventricle (LV) contraction were similar in both groups at baseline, NAFLD-IR showed severe myocardial dysfunction post-AMI, with prominent LV reshaping and increased end-diastolic and end-systolic volumes. Hearts of NAFLD-IR displayed hypertrophy, steatosis, and IR due to 18:1/18:1-diacylglycerol–mediated protein kinase Cε (PKCε) activation. Myocardial fatty acid–linked respiration and oxidative stress were increased, whereas mitochondrial efficiency was decreased. In humans, decreased myocardial mitochondrial efficiency of ventricle biopsies related to IR and troponin levels, a marker of impaired myocardial integrity. Taken together, increased lipid availability and IR favor susceptibility to ischemia-induced cardiac dysfunction. The diacylglycerol-PKCε pathway and reduced mitochondrial efficiency both caused by myocardial lipotoxicity may contribute to the impaired LV compensation of the noninfarcted region of the myocardium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.