High-loaded membrane bioreactors (HL-MBRs), i.e., bioreactors equipped with a membrane for biomass retention and operated at extremely short sludge and hydraulic retention times, can concentrate sewage organic matter to facilitate subsequent energy and chemical recovery from these organics. Bioflocculation, accomplished by microorganisms that produce extracellular polymers, is a very important mechanism in these reactors. Bacterial diversity of the sludge and supernatant fraction of HL-MBRs operated at very short sludge retention times (0.125, 0.5, and 1 day) were determined using a PCR-denaturing gradient gel electrophoresis (DGGE) and clone library approach and compared to the diversity in sewage. Already at a sludge retention time (SRT) of 0.125 day, a distinct bacterial community developed compared to the community in sewage. Bioflocculation, however, was low and the majority of the bacteria, especially Arcobacter, were present in the supernatant fraction. Upon increasing SRT from 0.125 to 1 day, a much stronger bioflocculation was accompanied by an increased abundance of Bacteroidetes in the (solid) sludge fraction: 27.5 % at an SRT of 0.5 day and 46.4 % at an SRT of 1 day. Furthermore, cluster analysis of DGGE profiles revealed that the bacterial community structure in the sludge was different from that in the supernatant. To localize specific bacterial classes in the sludge flocs, fluorescence in situ hybridization (FISH) was carried out with three different bacterial probes. This showed that Betaproteobacteria formed clusters in the sludge flocs whereas Alphaproteobacteria and Gammaproteobacteria were mainly present as single cells.
Nisin is frequently added as food additive to soft cheese to increase food safety against foodborne pathogens like Listeria monocytogenes. The goal of this study was the extension of the antimicrobial activity of nisin in sour curd cheese (SCC) by self-releasing adsorbed nisin from Neusilin UFL2 over production-based pH shift. First, the antimicrobial activity of nisin adsorbed to Neusilin UFL2 (UFL2-N) and free nisin was investigated in BHI broth at a pH range from 7.5 to 4.5 for each of six L. monocytogenes field isolates. UFL2-N showed similar minimal inhibition concentration to L. monocytogenes over time as free nisin. Distribution of nebulized, fluorescence-labelled UFL2 was homogenous on SCC surface. Thereafter, SCC surface was inoculated with L. monocytogenes and 0.004, 0.013, 0.026, and 0.132 mg mL-1 UFL2-N or free nisin. In SCC, L. monocytogenes was below quantification limit at 0.132 mg mL-1 UFL2-N or free nisin after 2 days of ripening. Collectively, UFL2-N enabled a slow release and antilisterial activity in vitro as well as in cheese manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.