The necessity for hydrocarbon-producing countries to increase their reserves has led to companies exploring the deposits available in source rocks that might be over-pressured and thus, strict rules are required for their development. Overpressure, which may result in wellbore stability problems, could result from several causes such as mechanical effects, dynamic transfer, chemical stress, thermal stress, among others, in which undercompaction is frequently the main cause, generated when the sediment deposition velocity exceeds the fluid ejection rate.The expansion of fluids generated by thermal stresses and the reduction of porosity caused by chemical stresses may be among the other causes of overpressure in shales. The new methodology presented in this paper makes it possible to determine the pressure due to thermal stresses caused by the cracking of kerogen and oil in shales. In addition, petrophysical and geochemical models are considered in order to precisely ascertain the increase in pore pressure due to temperature andfluid expansion. An increase of 20% in pressure is seen when compared with undercompaction. As a result of this methodology, the mud window was optimized and the hydrocarbons, generated under subsurface the conditions (pressure, temperature) analyzed, were quantified.
This paper presents a numerical model of an integrated 3D casing-cement-formation system, to evaluate the mechanical tensile and shear failure of the cement at the casing-cement interface as the pressure and temperature conditions of the formation and borehole vary during production. The model which includes the formation pressure, unlike others proposed, was developed by stages under finite element discretization and compared to analytical models. Results show that increasing the formation temperature increases the probability of tensile and shear failure in the cement, while increasing the wellbore temperature decreases these probabilities. On the other hand, the decrease in the well pressure reduces the probability of shear failure and increases the tensile failure. In the case of formation pressure, the opposite occurs.
This paper describes a methodology for formation evaluation based on the integration of multi-physics borehole geophysical measurements and 3D seismic data. The objective is to estimate in-situ petrophysical parameters that honor the physics of multi-phase mudfiltrate invasion taking place in the immediate vicinity of the wellbore. Examples are shown of the estimation of porosity, absolute permeability, permeability anisotropy, and initial water saturation using combinations of electromagnetic logs, formation tester data, P-and S-wave sonic logs, and magnetic resonance measurements. A procedure is also described to estimate petrophysical parameters based on the use of time-lapse logging and insitu permanent pressure and DC resistivity sensors. Finally, 3D seismic data, post-stack and pre-stack, are used to ascertain lateral extent and continuity of lithology and flow units.
La caracterización petrofísica de yacimientos desempeña un rol importante en la industria petrolera, siendo primordial en el gerenciamiento integral y la optimización de procesos de recuperación. El siguiente trabajo planteó el modelado petrofísico y de facies para las unidades formacionales del Grupo Grant y el yacimiento Anderson dentro del Bloque-Bunda-3D-2009 de la cuenca Canning en Australia. Esta propuesta fue dividida en dos etapas. La etapa conceptual se basó en el estudio de la migración y acumulación de hidrocarburos en el área, y la creación de un inventario desde la información registrada en el Sistema de Gestión de Información Geotérmica y de Petróleo de Australia Occidental (WAPIMS). La segunda etapa se desarrolló considerando que la cantidad y distribución de lutitas presentes en las areniscas, tienen un gran impacto en la productividad de los yacimientos de hidrocarburos. Así, el primer paso fue calcular el volumen de lutitas a través del índice lineal de rayos gamma. Posteriormente, se modelaron las facies mediante el uso de redes neuronales y los resultados fueron comparados con las descripciones litológicas reportadas de los núcleos de diámetro completo de perforación. La porosidad efectiva fue modelada mediante el registro de densidad volumétrica de la roca y el tipo de distribución de arcilla; la saturación de agua mediante la correlación de Poupon-Leveaux y el modelo de permeabilidad horizontal fue generado con los datos de análisis convencionales de núcleos de diámetro completo de perforación. Se resalta que la presencia de pirita afectó la respuesta de los registros de densidad volumétrica, porosidad neutrón y de resistividad para algunos pozos del área. Igualmente, el hidrodinamismo actuante y la presencia de agua meteórica en los acuíferos incidió en la respuesta del registro eléctrico resistivo, resultando complejo la identificación de contactos agua - hidrocarburo
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.