We have established a protocol allowing transient and inducible coexpression of many foreign genes in Drosophila S2 Schneider cells. With this powerful approach of reverse genetics, we studied the interaction of the protein tyrosine kinases Syk and Lyn with the B cell antigen receptor (BCR). We find that Lyn phosphorylates only the first tyrosine whereas Syk phosphorylates both tyrosines of the BCR immunoreceptor tyrosine-based activation motif (ITAM). Furthermore, we show that Syk is a positive allosteric enzyme, which is strongly activated by the binding to the phosphorylated ITAM tyrosines, thus initiating a positive feedback loop at the receptor. The BCR-dependent Syk activation and signal amplification is efficiently counterbalanced by protein tyrosine phosphatases, the activity of which is regulated by H(2)O(2) and the redox equilibrium inside the cell.
Thrombin is one of the most extensively studied of all proteases. Its central role in the coagulation cascade as well as several other areas has been thoroughly documented. Despite this, its consensus cleavage site has never been determined in detail. Here we have determined its extended substrate recognition profile using phage-display technology. The consensus recognition sequence was identified as, P2-Pro, P1-Arg, P1′-Ser/Ala/Gly/Thr, P2′-not acidic and P3′-Arg. Our analysis also identifies an important role for a P3′-arginine in thrombin substrates lacking a P2-proline. In order to study kinetics of this cooperative or additive effect we developed a system for insertion of various pre-selected cleavable sequences in a linker region between two thioredoxin molecules. Using this system we show that mutations of P2-Pro and P3′-Arg lead to an approximate 20-fold and 14-fold reduction, respectively in the rate of cleavage. Mutating both Pro and Arg results in a drop in cleavage of 200–400 times, which highlights the importance of these two positions for maximal substrate cleavage. Interestingly, no natural substrates display the obtained consensus sequence but represent sequences that show only 1–30% of the optimal cleavage rate for thrombin. This clearly indicates that maximal cleavage, excluding the help of exosite interactions, is not always desired, which may instead cause problems with dysregulated coagulation. It is likely exosite cooperativity has a central role in determining the specificity and rate of cleavage of many of these in vivo substrates. Major effects on cleavage efficiency were also observed for residues as far away as 4 amino acids from the cleavage site. Insertion of an aspartic acid in position P4 resulted in a drop in cleavage by a factor of almost 20 times.
The human chymase (HC) is a major granule constituent of mast cells (MCs) residing in the connective tissue and the sub-mucosa. Although many potential substrates have been described for this important MC enzyme, its full range of in vivo substrates has most likely not yet been identified. A major step toward a better understanding of the function of the HC is therefore to determine its extended cleavage specificity. Using a phage-displayed random nonapeptide library, we show that the HC has a rather stringent substrate recognition profile. Only aromatic amino acids (aa) are accepted in position P1, with a strong preference for Tyr and Phe over Trp. Aliphatic aa are preferred in positions P2 to P4 N-terminal of the cleaved bond. In the P1' position C-terminal of the cleaved bond, Ser is clearly over-represented and acidic aa Asp and Glu are strongly preferred in the P2' position. In P3', the small aliphatic aa Ala, Val and Gly were frequently observed. The consensus sequence, from P4 to P3': Gly/Leu/Val-Val/Ala/Leu-Ala/Val/Leu-Tyr/Phe-Ser-Asp/Glu-Ala/Val/Gly, provides an instrument for the identification of novel in vivo substrates for the HC. Interestingly, a very similar cleavage specificity was recently reported for the major chymase in mouse connective tissue mast cells (CTMCs), the beta-chymase mouse mast cell protease-4, suggesting functional homology between these two enzymes. This indicates that a rather stringent chymotryptic substrate recognition profile has been evolutionary conserved for the dominant CTMC chymase in mammals.
The acidic granules of natural killer (NK) cells, T cells, mast cells, and neutrophils store large amounts of serine proteases. Functionally, these proteases are involved, e.g., in the induction of apoptosis, the recruitment of inflammatory cells, and the remodeling of extra-cellular matrix. Among the granule proteases are the phylogenetically related mast cell chymases, neutrophil cathepsin G, and T-cell granzymes (Gzm B to H and Gzm N), which share the characteristic absence of a Cys(191)-Cys(220) bridge. The genes of these proteases are clustered in one locus, the mast cell chymase locus, in all previously investigated mammals. In this paper, we present a detailed analysis of the chymase locus in cattle (Bos taurus) and opossum (Monodelphis domestica). The gained information delineates the evolution of the chymase locus over more than 200 million years. Surprisingly, the cattle chymase locus contains two alpha-chymase and two cathepsin G genes where all other studied chymase loci have single genes. Moreover, the cattle locus holds at least four genes for duodenases, which are not found in other chymase loci. Interestingly, duodenases seem to have digestive rather than immune functions. In opossum, on the other hand, only two chymase locus-related genes have been identified. These two genes are not arranged in one locus, but appear to have been separated by a marsupial-specific chromosomal rearrangement. Phylogenetic analyses place one of the opossum genes firmly with mast cell alpha-chymases, which indicates that the alpha-chymase had already evolved as a separate, clearly identifiable gene before the separation of marsupials and placental mammals. In contrast, the second gene in opossum is positioned phylogenetically between granzymes, cathepsin G, and the duodenases. These genes, therefore, probably evolved as separate subfamilies after the separation of placental mammals from marsupials. In platypus, only one chymase locus-like sequence could be identified. This previously published "granzyme" does not cluster clearly with any of the chymase locus gene families, but shares the absence of the Cys(191)-Cys(220) bridge with the other chymase locus proteases. These findings indicate that all chymase locus genes are derived from a single ancestor that was present more than 200 million years ago.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.