AbstractPatterns of genetic structure in highly mobile marine vertebrates may be accompanied by phenotypic variation. Most studies in marine turtles focused on population genetic structure have been performed at rookeries. We studied whether genetic and morphological variation of the endangered green turtle (Chelonia mydas) is consistent geographically, focusing on foraging grounds. An association between population genetic structure and body shape variation at broad (inter-lineage) and fine (foraging grounds) scales was predicted and analysed using mitochondrial DNA and geometric morphometrics. Although genetic and phenotypic differentiation patterns were congruent between lineages, no fine-scale association was found, suggesting adaptive divergence. Connectivity among Pacific foraging grounds found here suggests that temperatures of ocean surface currents may influence the genetic structure of C. mydas on a broad scale. Our results suggest that vicariance, dispersal, life-history traits and ecological conditions operating in foraging grounds have shaped the intraspecific morphology and genetic diversity of this species. Considering a range of geographic and temporal scales is useful when management strategies are required for cosmopolitan species. Integrating morphological and genetic tools at different spatial scales, conservation management is proposed based on protection of neutral and adaptive diversity. This approach opens new questions and challenges, especially regarding conservation genetics in cosmopolitan species.
The green turtle (Chelonia mydas) is a globally distributed marine species whose evolutionary history has been molded by geological events and oceanographic and climate changes. Divergence between Atlantic and Pacific clades has been associated with the uplift of the Panama Isthmus, and inside the Pacific region, a biogeographic barrier located west of Hawaii has restricted the gene flow between Central/Eastern and Western Pacific populations. We investigated the carapace shape of C. mydas from individuals of Atlantic, Eastern Pacific, and Western Pacific genetic lineages using geometric morphometrics to evaluate congruence between external morphology and species’ phylogeography. Furthermore, we assessed the variation of carapace shape according to foraging grounds. Three morphologically distinctive groups were observed which aligned with predictions based on the species’ lineages, suggesting a substantial genetic influence on carapace shape. Based on the relationship between this trait and genetic lineages, we propose the existence of at least three distinct morphotypes of C. mydas. Well-defined groups in some foraging grounds (Galapagos, Costa Rica and New Zealand) may suggest that ecological or environmental conditions in these sites could also be influencing carapace shape in C. mydas. Geometric morphometrics is a suitable tool to differentiate genetic lineages in this cosmopolitan marine species. Consequently, this study opens new possibilities to explore and test ecological and evolutionary hypotheses in species with wide morphological variation and broad geographic distribution range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.