Objective Pantothenate kinase 2‐associated neurodegeneration (PKAN) is a rare neurodegenerative disease caused by mutations in the pantothenate kinase 2 (PANK2) gene. PKAN is associated with iron deposition in the basal ganglia and, occasionally, with the occurrence of misshaped erythrocytes (acanthocytes). The aim of this study was to assess residual activity of PANK2 in erythrocytes of PKAN patients and to correlate these data with the type of PANK2 mutations and the progression of neurodegeneration. Methods Residual PANK2 activities in erythrocytes of 14 PKAN patients and 14 related carriers were assessed by a radiometric assay. Clinical data on neurodegeneration included the Barry–Albright Dystonia Scale (BAD‐Scale) besides further general patient features. A molecular visualization and analysis program was used to rationalize the influence of the PKAN causing mutations on a molecular level. Results Erythrocytes of PKAN patients had markedly reduced or no PANK2 activity. However, patients with at least one allele of the c.1583C > T (T528M) or the c.833G > T (R278L) variant exhibited 12–56% of residual PANK2 activity. In line, molecular modeling indicated only minor effects on enzyme structure for these point mutations. On average, these patients with c.1583C > T or c.833G > T variant had lower BAD scores corresponding to lower symptom severity than patients with other PANK2 point mutations. Interpretation Residual erythrocyte PANK2 activity could be a predictor for the progression of neurodegeneration in PKAN patients. Erythrocytes are an interesting patient‐derived cell system with still underestimated diagnostic potential.
Storage of packed red blood cells is associated with changes in erythrocytes that over time increasingly impair cellular function and potentially contribute to adverse effects associated with blood transfusion. Exposure of phosphatidylserine at the outer membrane leaflet of erythrocytes and shedding of microvesicles (MVs) during packed red blood cell storage are alterations assumed to increase the risk of prothrombotic events in recipients. Here, we used rotational thromboelastometry to study the coagulation process in blood samples with erythrocytes from stored PRBCs reconstituted with freshly prepared platelet-rich plasma. We explored the influence of following effects on the coagulation process: 1) PRBC storage duration, 2) differences between erythrocytes from stored PRBCs compared to freshly drawn erythrocytes, and 3) the contribution of added MVs. Interestingly, despite of a higher fraction of PS-positive cells, erythrocytes from PRBCs stored for 6 weeks revealed longer clotting times than samples with erythrocytes stored for 2 or 4 weeks. Further, clotting times and clot formation times were considerably increased in samples reconstituted with erythrocytes from stored PRBCs as compared to fresh erythrocytes. Moreover, MVs added to reconstituted samples elicited only comparably small and ambiguous effects on coagulation. Thus, this study provides no evidence for an amplified clotting process from prolonged storage of PRBCs but on the contrary implicates a loss of function, which may be of clinical significance in massive transfusion. Our observations add to the increasing body of evidence viewing erythrocytes as active players in the clotting process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.