The complement system is an important part of the innate immune system. The complement cascade may be initiated downstream of the lectin activation pathway upon binding of mannan-binding lectin, ficolins, or collectin kidney 1 (CL-K1, alias CL-11) to suitable microbial patterns consisting of carbohydrates or acetylated molecules. During purification and characterization of native CL-K1 from plasma, we observed that collectin liver 1 (CL-L1) was copurified. Based on deglycosylation and nonreduced/reduced two-dimensional SDS-PAGE, we detected CL-K1 and CL-L1 in disulfide bridge-stabilized complexes. Heteromeric complex formation in plasma was further shown by ELISA and transient coexpression. Judging from the migration pattern on two-dimensional SDS-PAGE, the majority of plasma CL-K1 was found in complex with CL-L1. The ratio of this complex was in favor of CL-K1, suggesting that a heteromeric subunit is composed of one CL-L1 and two CL-K1 polypeptide chains. We found that the complex bound to mannan-binding lectin–associated serine proteases (MASPs) with affinities in the nM range in vitro and was associated with both MASP-1/-3 and MASP-2 in plasma. Upon binding to mannan or DNA in the presence of MASP-2, the CL-L1–CL-K1 complex mediated deposition of C4b. In favor of large oligomers, the activity of the complex was partly determined by the oligomeric size, which may be influenced by an alternatively spliced variant of CL-K1. The activity of the native heteromeric complexes was superior to that of recombinant CL-K1. We conclude that CL-K1 exists in circulation in the form of heteromeric complexes with CL-L1 that interact with MASPs and can mediate complement activation.
3MC syndrome is an autosomal recessive heterogeneous disorder with features linked to developmental abnormalities. The main features include facial dysmorphism, craniosynostosis and cleft lip/palate; skeletal structures derived from cranial neural crest cells (cNCC). We previously reported that lectin complement pathway genes COLEC11 and MASP1/3 are mutated in 3MC syndrome patients. Here we define a new gene, COLEC10, also mutated in 3MC families and present novel mutations in COLEC11 and MASP1/3 genes in a further five families. The protein products of COLEC11 and COLEC10, CL-K1 and CL-L1 respectively, form heteromeric complexes. We show COLEC10 is expressed in the base membrane of the palate during murine embryo development. We demonstrate how mutations in COLEC10 (c.25C>T; p.Arg9Ter, c.226delA; p.Gly77Glufs*66 and c.528C>G p.Cys176Trp) impair the expression and/or secretion of CL-L1 highlighting their pathogenicity. Together, these findings provide further evidence linking the lectin complement pathway and complement factors COLEC11 and COLEC10 to morphogenesis of craniofacial structures and 3MC etiology.
Collectin 11 (CL-11), also referred to as collectin kidney 1 (CL-K1), is a pattern recognition molecule that belongs to the collectin group of proteins involved in innate immunity. It interacts with glycoconjugates on pathogen surfaces and has been found in complex with mannose-binding lectin-associated serine protease 1 (MASP-1) and/or MASP-3 in circulation. Mutation in the CL-11 gene was recently associated with the developmental syndrome 3MC. In the present study, we established and thoroughly validated a sandwich enzyme-linked immunosorbent assay (ELISA) based on two different monoclonal antibodies. The assay is highly sensitive, specific and shows excellent quantitative characteristics such as reproducibility, dilution linearity and recovery (97.7–104%). The working range is 0.15–34 ng/ml. The CL-11 concentration in two CL-11-deficient individuals affected by the 3MC syndrome was determined to be below 2.1 ng/ml. We measured the mean serum CL-11 concentration to 284 ng/ml in 100 Danish blood donors, with a 95% confidence interval of 269–299 ng/ml. There was no significant difference in the CL-11 concentration measured in matched serum and plasma samples. Storage of samples and repeated freezing and thawing to a certain extent did not influence the ELISA. This ELISA offers a convenient and reliable method for studying CL-11 levels in relation to a variety of human diseases and syndromes.
Collectin liver 1 (CL-L1, alias CL-10) and collectin kidney 1 (CL-K1, alias CL-11), encoded by the COLEC10 and COLEC11 genes, respectively, are highly homologous soluble pattern recognition molecules in the lectin pathway of complement. These proteins may be involved in anti-microbial activity and in tissue development as mutations in COLEC11 are one of the causes of the developmental defect syndrome 3MC. We studied variations in COLEC10 and COLEC11, the impact on serum concentration and to what extent CL-L1 and CL-K1 serum concentrations are correlated. We sequenced the promoter regions, exons and exon-intron boundaries of COLEC10 and COLEC11 in samples from Danish Caucasians and measured the corresponding serum levels of CL-L1 and CL-K1. The median concentration of CL-L1 and CL-K1 was 1.87 μg/ml (1.00–4.14 μg/ml) and 0.32 μg/ml (0.11–0.69 μg/ml), respectively. The level of CL-L1 strongly correlated with CL-K1 (ρ = 0.7405, P <0.0001). Both genes were highly conserved with the majority of variations in the non-coding regions. Three non-synonymous variations were tested: COLEC10 Glu78Asp (rs150828850, minor allele frequency (MAF): 0.003), COLEC10 Arg125Trp (rs149331285, MAF: 0.007) and COLEC11 His219Arg (rs7567833, MAF: 0.033). Carriers of COLEC10 Arg125Trp had increased CL-L1 serum levels (P = 0.0478), whereas promoter polymorphism COLEC11-9570C>T (rs3820897) was associated with decreased levels of CL-K1 (P = 0.044). In conclusion, COLEC10 and COLEC11 are highly conserved, which may reflect biological importance of CL-L1 and CL-K1. Moreover, the strong inter individual correlation between the two proteins suggests that a major proportion are found as heterooligomers or subjected to the same regulatory mechanisms.
Collectin liver 1 (CL-L1, alias collectin 10) and collectin kidney 1 (CL-K1, alias collectin 11) are oligomeric pattern recognition molecules associated with the complement system, and mutations in either of their genes may lead to deficiency and developmental defects. The two collectins are reportedly localized and synthesized in the liver, kidneys, and adrenals, and can be found in the circulation as heteromeric complexes (CL-LK), which upon binding to microbial high mannose-like glycoconjugates activates the complement system via the lectin activation pathway. The tissue distribution of homo- vs. heteromeric CL-L1 and -K1 complexes, the mechanism of heteromeric complex formation and in which tissues this occurs, is hitherto incompletely described. We have by immunohistochemistry using monoclonal antibodies addressed the precise cellular localization of the two collectins in the main human tissues. We find that the two collectins have widespread and almost identical tissue distribution with a high expression in epithelial cells in endo-/exocrine secretory tissues and mucosa. There is also accordance between localization of mRNA transcripts and detection of proteins, showing that local synthesis likely is responsible for peripheral localization and eventual formation of the CL-LK complexes. The functional implications of the high expression in endo-/exocrine secretory tissue and mucosa is unknown but might be associated with the activity of MASP-3, which has a similar pattern of expression and is known to potentiate the activity of the alternative complement activation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.