In this report, we propose a deep learning technique for high-accuracy estimation of the intensity class of a typhoon from a single satellite image, by incorporating meteorological domain knowledge. By using the Visual Geometric Group’s model, VGG-16, with images preprocessed with fisheye distortion, which enhances a typhoon’s eye, eyewall, and cloud distribution, we achieved much higher classification accuracy than that of a previous study, even with sequential-split validation. Through comparison of t-distributed stochastic neighbor embedding (t-SNE) plots for the feature maps of VGG with the original satellite images, we also verified that the fisheye preprocessing facilitated cluster formation, suggesting that our model could successfully extract image features related to the typhoon intensity class. Moreover, gradient-weighted class activation mapping (Grad-CAM) was applied to highlight the eye and the cloud distributions surrounding the eye, which are important regions for intensity classification; the results suggest that our model qualitatively gained a viewpoint similar to that of domain experts. A series of analyses revealed that the data-driven approach using only deep learning has limitations, and the integration of domain knowledge could bring new breakthroughs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.