The mechanisms that govern giant cell (GC) formation in inflammatory, neoplastic and physiologic conditions are far from being understood. Here, we demonstrate that B-1 cells are essential for foreign-body GC formation in the mouse. GCs were analysed on the surface of glass cover slips implanted into the subcutaneous tissue of the animals. It was demonstrated that GCs are almost absent on cover slips implanted into the subcutaneous tissue of BALB/c or CBA/N X-linked immunodeficient mice. As these animals do not have B-1 cells in the peritoneal cavity, they were reconstituted with B-1 cells obtained from cultures of adherent mouse peritoneal cells. Results showed that in B-1-reconstituted animals, the number of GCs on the implant surface surpassed the values obtained with preparations from wild animals. In animals selectively irradiated (pleural and peritoneal cavities) to deplete these cavities of B-1 cells, GCs were also not formed. Enriched suspensions of B-1 cells grown in culture were labelled with [(3)H]-tymidine and injected into the peritoneal cavity of naive mice before implantation of glass cover slips. After 4 days, about 17% of mononuclear cells had their nuclei labelled, and almost 70% of GCs had one or more of their nuclei labelled when analysed by histoautoradiographic technique. A few GCs expressed an immunoglobulin M when analysed by immunostaining and confocal microscopy. Overall, these data demonstrate that B-1 cells are pivotal in the mechanisms of foreign-body GC formation in the mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.