Malignant migrating partial seizures of infancy (MMPSI) is a rare epileptic encephalopathy of infancy that combines pharmacoresistant seizures with developmental delay1. We performed exome sequencing in 3 probands with MMPSI and identified de novo gain-of-function mutations in the C-terminal domain of the KCNT1 potassium channel. We sequenced KCNT1 in 9 additional patients with MMPSI and identified mutations in 4 of them, in total identifying mutations in 6 out of 12 unrelated patients. Functional studies showed that the mutations led to constitutive activation of the channel, mimicking the effects of phosphorylation of the C-terminal domain by protein kinase C. In addition to regulating ion flux, KCNT1 has a non conducting function as its C terminus interacts with cytoplasmic proteins involved in developmental signaling pathways. These results provide a target for future diagnostic approaches and research in this devastating condition.
In humans, absence of Fragile X mental retardation protein (FMRP), an RNA-binding protein, results in Fragile X syndrome (FXS), the most common inherited form of intellectual disability. Here we report through biochemical and electrophysiological studies that FMRP binds the C-terminus of the Slack sodium-activated potassium channel to activate the channel. The findings suggest that Slack activity may provide a link between patterns of neuronal firing and changes in protein translation.
Mitochondria in nerve terminals are subjected to extensive Ca 2؉ fluxes and high energy demands, but the extent to which the synaptic mitochondria buffer Ca 2؉ is unclear. In this study, we identified a difference in the Ca 2؉ clearance ability of nonsynaptic versus synaptic mitochondrial populations enriched from rat cerebral cortex. Mitochondria were isolated using Percoll discontinuous gradients in combination with high pressure nitrogen cell disruption. Mitochondria in the nonsynaptic fraction originate from neurons and other cell types including glia, whereas mitochondria enriched from a synaptosomal fraction are predominantly neuronal and presynaptic in origin. There were no differences in respiration or initial Ca 2؉ loads between nonsynaptic and synaptic mitochondrial populations. Following both bolus and infusion Ca 2؉ addition, nonsynaptic mitochondria were able to accumulate significantly more exogenously added Ca 2؉ than the synaptic mitochondria before undergoing mitochondrial permeability transition, observed as a loss in mitochondrial membrane potential and decreased Ca 2؉ uptake. The limited ability of synaptic mitochondria to accumulate Ca 2؉ could result from several factors including a primary function of ATP production to support the high energy demand of presynaptic terminals, their relative isolation in comparison with the threads or clusters of mitochondria found in the soma of neurons and glia, or the older age and increased exposure to oxidative damage of synaptic versus nonsynaptic mitochondria. By more readily undergoing permeability transition, synaptic mitochondria may initiate neuron death in response to insults that elevate synaptic levels of intracellular Ca 2؉ , consistent with the early degeneration of distal axon segments in neurodegenerative disorders.Mitochondria are important regulators of cellular Ca 2ϩ homeostasis, producers of ATP via oxidative phosphorylation, and regulators of cell death pathways (for reviews see Refs. 1 and 2). Mitochondria assist in maintaining Ca 2ϩ homeostasis by sequestering and releasing Ca 2ϩ (2-4). Normal Ca 2ϩ cycling occurs by the movement of Ca 2ϩ into mitochondria via the Ca 2ϩ uniporter and slow efflux via the Na ϩ /Ca 2ϩ antiporter or by Na ϩ -independent mechanisms (1, 3). Isolated mitochondria in the presence of phosphate take up Ca 2ϩ to a fixed capacity, in a membrane potential (⌬⌿ m )-dependent fashion (5-7). When the mitochondria become overloaded with Ca 2ϩ , they undergo the cataclysmic mitochondrial permeability transition (mPT) 3 via formation of a nonselective pore that allows solutes of 1500 daltons or smaller to pass through the usually impermeable inner mitochondrial membrane with a resultant rupture of the outer mitochondrial membrane caused by osmotic swelling (2, 8 -12).Previous studies have demonstrated substantial mitochondrial heterogeneity that exists among organs and within the CNS. Nonsynaptic brain mitochondria are more resistant to Ca 2ϩ -induced opening of mPT, assessed by mitochondrial swelling, when compared w...
In severe early-onset epilepsy, precise clinical and molecular genetic diagnosis is complex, as many metabolic and electro-physiological processes have been implicated in disease causation. The clinical phenotypes share many features such as complex seizure types and developmental delay. Molecular diagnosis has historically been confined to sequential testing of candidate genes known to be associated with specific sub-phenotypes, but the diagnostic yield of this approach can be low. We conducted whole-genome sequencing (WGS) on six patients with severe early-onset epilepsy who had previously been refractory to molecular diagnosis, and their parents. Four of these patients had a clinical diagnosis of Ohtahara Syndrome (OS) and two patients had severe non-syndromic early-onset epilepsy (NSEOE). In two OS cases, we found de novo non-synonymous mutations in the genes KCNQ2 and SCN2A. In a third OS case, WGS revealed paternal isodisomy for chromosome 9, leading to identification of the causal homozygous missense variant in KCNT1, which produced a substantial increase in potassium channel current. The fourth OS patient had a recessive mutation in PIGQ that led to exon skipping and defective glycophosphatidyl inositol biosynthesis. The two patients with NSEOE had likely pathogenic de novo mutations in CBL and CSNK1G1, respectively. Mutations in these genes were not found among 500 additional individuals with epilepsy. This work reveals two novel genes for OS, KCNT1 and PIGQ. It also uncovers unexpected genetic mechanisms and emphasizes the power of WGS as a clinical tool for making molecular diagnoses, particularly for highly heterogeneous disorders.
Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein that regulates synaptic plasticity by repressing translation of specific mRNAs. We found that FMRP binds mRNA encoding the voltage-gated potassium channel Kv3.1b in brainstem synaptosomes. To explore the regulation of Kv3.1b by FMRP, we investigated Kv3.1b immunoreactivity and potassium currents in the auditory brainstem sound localization circuit of male mice. The unique features of this circuit allowed us to control neuronal activity in vivo by exposing animals to high-frequency amplitude modulated (AM) stimuli, which elicit predictable and stereotyped patterns of input to the anterior ventral cochlear nucleus (AVCN) and medial nucleus of the trapezoid body (MNTB). In wild type (WT) animals, Kv3.1b is expressed along a tonotopic gradient in the MNTB, with highest levels in neurons at the medial, high-frequency end. At baseline, Fmr1−/− mice, which lack FMRP, displayed dramatically flattened tonotopicity in Kv3.1b immunoreactivity and K+ currents relative to WT controls. Moreover, following 30 minutes of acoustic stimulation, levels of Kv3.1b immunoreactivity were significantly elevated in both the MNTB and AVCN of WT, but not Fmr1−/−, mice. These results suggest that FMRP is necessary for maintenance of the gradient in Kv3.1b protein levels across the tonotopic axis of the MNTB, and are consistent with a role for FMRP as a repressor of protein translation. Using numerical simulations, we demonstrate that Kv3.1b tonotopicity may be required for accurate encoding of stimulus features such as modulation rate, and that disruption of this gradient, as occurs in Fmr1−/− animals, degrades processing of this information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.