Platelet integrity and function critically depend on lipid composition. However, the lipid inventory in platelets was hitherto not quantified. Here, we examined the lipidome of murine platelets using lipid-category tailored protocols on a quantitative lipidomics platform. We could show that the platelet lipidome comprises almost 400 lipid species and covers a concentration range of 7 orders of magnitude. A systematic comparison of the lipidomics network in resting and activated murine platelets, validated in human platelets, revealed that <20% of the platelet lipidome is changed upon activation, involving mainly lipids containing arachidonic acid. Sphingomyelin phosphodiesterase-1 (Smpd1) deficiency resulted in a very specific modulation of the platelet lipidome with an order of magnitude upregulation of lysosphingomyelin (SPC), and subsequent modification of platelet activation and thrombus formation. In conclusion, this first comprehensive quantitative lipidomic analysis of platelets sheds light on novel mechanisms important for platelet function, and has therefore the potential to open novel diagnostic and therapeutic opportunities.
Platelet ACKR3/CXCR7 surface expression is enhanced and influences prognosis in coronary artery disease-(CAD) patients, who exhibit a distinct atherothrombotic platelet lipidome. Current investigation validates the potential of ACKR3/CXCR7 in regulating thrombo-inflammatory response, through its impact on the platelet lipidome. CAD patients-(n=230) with enhanced platelet-ACKR3/CXCR7 expression exhibited reduced aggregation. Pharmacological CXCR7-agonist-(VUF11207) significantly reduced pro-thrombotic platelet response in blood from ACS patients-(n=11) ex vivo. CXCR7-agonist administration reduced thrombotic functions and thrombo-inflammatory platelet-leukocyte interactions post myocardial infarction-(MI) and arterial injury in vivo. ACKR3/CXCR7-ligation did not affect surface availability of GPIbα, GPV, GPVI, GPIX, αv-integrin, β3-integrin, coagulation profile-(APTT, PT), bleeding time, plasma-dependent thrombin generation-(thrombinoscopy) or clot formation-(thromboelastography), but counteracted activation-induced phosphatidylserine exposure and procoagulant platelet-assisted thrombin generation. Targeted-(micro-UHPLC-ESI-QTrap-MS/MS) and untargeted-(UHPLC-ESI-QTOF-MS/MS) lipidomics analysis revealed that ACKR3/CXCR7-ligation favored generation of anti-thrombotic lipids-(dihomo-γ-linolenic acid-DGLA, 12-hydroxyeicosatrienoic acid-12-HETrE) over cyclooxygenase-COX-1-(thromboxane-TxA2), or 12-lipoxygenase-LOX-(12-HETE) metabolized pro-thrombotic, and phospholipase derived atherogenic-(lysophosphatidylcholine-LPC) lipids, in healthy subjects and CAD patients, contrary to anti-platelet therapy. Through 12-HETrE, ACKR3/CXCR7-ligation coordinated with Gαs-coupled prostacyclin receptor-(IP) to trigger cAMP-PKA mediated platelet inhibition. ACKR3/CXCR7-ligation reduced generation of lipid agonists-(arachidonic acid-AA,TxA2), lipid signaling intermediates-(lyophosphatidylinositol-LPI, diacylglycerol-DG), which affected calcium mobilization, intracellular signaling, consequently platelet interaction with physiological matrices and thrombo-inflammatory secretion-(IL1β,IFN-γ,TGF-β,IL-8), emphasizing its functional dichotomy from pro-thrombotic CXCR4. Moreover, CXCR7-agonist regulated heparin-induced thrombocytopenia-(HIT)-sera/IgG-induced platelet and neutrophil activation, heparin induced platelet aggregation-(HIPA), generation of COX-1-(TxA2), 12-LOX-(12-HETE) derived thrombo-inflammatory lipids, platelet-neutrophil aggregate formation, and thrombo-inflammatory secretion (sCD40L, IL-1β, IFN-γ, TNF-α, sP-selectin, IL-8, tissue factor-TF) ex vivo. Therefore, ACKR3/CXCR7 may offer a novel therapeutic strategy in acute/chronic thrombo-inflammation exaggerated cardiovascular pathologies, and CAD.
Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion.
The investigators explore the role of PDK1 (phosphoinositide-dependent protein kinase 1) in the cytoskeletal regulation of platelet production and furnish new insights into megakaryocyte maturation and proplatelet formation.
Rationale: Platelet activation after contact to subendothelial collagen leads to acute arterial thrombosis. Annexin A7 (ANXA7) is a phospholipid-binding protein participating in the regulation of intracellular Ca 2+ and exocytosis. Objective: The present study aimed to determine the role of ANXA7 in platelet Ca 2+ signaling and lipid metabolism during platelet activation in arterial thrombosis using the ANXA7 inhibitor ABO and gene-targeted mice lacking Anxa7 ( Anxa7 -/- ). Methods and Results: ANXA7 is strongly expressed in platelets. Functionally, luminescence aggregometry revealed significantly abrogated aggregation and secretion of ABO-treated or Anxa7 -/- platelets when compared with untreated or Anxa7+/+ platelets after activation with collagen or the GPVI-specific agonist collagen-related peptide (CRP). Furthermore, while both thrombus formation on collagen-coated surfaces under high arterial shear rates in ABO-treated or Anxa7-deficient whole blood, and thrombotic vascular occlusion after FeCl3-induced injury in vivo in Anxa7 -/- bone marrow chimeric mice were significantly diminished, no prolongation of bleeding time was observed in ABO-treated or Anxa7 -/- mice. Fura-2-AM spectrofluorimetry unraveled a blunted [Ca2+]i increase in ABO-treated or Anxa7 -/- platelets after GPVI stimulation. Due to an abolished PLCy2 phosphorylation, Anxa7 -/- platelets displayed abrogated intracellular Ca 2+ mobilization following CRP-dependent platelet activation. Quantitative lipidomics analysis further revealed that ANXA7 critically affects platelet oxylipin metabolism following GPVI-dependent platelet activation. Anxa7 -/- platelets showed a significantly reduced generation of several bioactive metabolites, particularly TxA 2 and 12(S)-HETE. Finally, defective PLCy2 phosphorylation and blunted [Ca 2+ ]i increase in Anxa7 -/- platelets could be rescued by exogenous addition of 12(S)-HETE, indicating that ANXA7 is a critical regulator of the platelet 12-lipoxygenase in GPVI-dependent platelet Ca 2+ signaling during arterial thrombosis. Conclusions: The present study unravels ANXA7 as a regulator of oxylipin metabolism and Ca 2+ -dependent platelet activation downstream of GPVI. ANXA7 plays an important role in platelet signaling during arterial thrombosis and thus may reflect a promising target for novel antiplatelet strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.