The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex.
Frontal beta oscillations are associated with top-down control mechanisms but also change over time during a task. It is unclear whether change over time represents another control function or a neural instantiation of vigilance decrements over time, the time-on-task effect. We investigated how frontal beta oscillations are modulated by cognitive control and time. We used frontal chronic electrocorticography in monkeys performing a trial-and-error task, comprising search and repetition phases. Specific beta oscillations in the delay period of each trial were modulated by task phase and adaptation to feedback. Beta oscillations in this same period showed a significant within-session change. These separate modulations of beta oscillations did not interact. Crucially, and in contrast to previous investigations, we examined modulations of beta around spontaneous pauses in work. After pauses, the beta power modulation was reset and the cognitive control effect was maintained. Cognitive performance was also maintained whereas behavioral signs of fatigue continued to increase. We propose that these beta oscillations reflect multiple factors contributing to the regulation of cognitive control. Due to the effect of pauses, the time-sensitive factor cannot be a neural correlate of time-on-task but may reflect attentional effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.