Fecal microbiota transplantation (FMT) is an emerging therapeutic option for a variety of diseases, and is characterized as the transfer of fecal microorganisms from a healthy donor into the intestinal tract of a diseased recipient. In human clinics, FMT has been used for treating diseases for decades, with promising results. In recent years, veterinary specialists adapted FMT in canine patients; however, compared to humans, canine FMT is more inclined towards research purposes than practical applications in most cases, due to safety concerns. Therefore, in order to facilitate the application of fecal transplant therapy in dogs, in this paper, we review recent applications of FMT in canine clinical treatments, as well as possible mechanisms that are involved in the process of the therapeutic effect of FMT. More research is needed to explore more effective and safer approaches for conducting FMT in dogs.
Background Laminitis is a common and serve disease which caused by inflammation and pathological changes of the laminar junction. However, the pathologic mechanism remains unclear. In this study we aimed to investigate changes of the gut microbiota and metabolomics in oligofructose-induced laminitis of horses. Results Animals submitted to treatment with oligofructose had lower fecal pH but higher lactic acid, histamine, and Lipopolysaccharide (LPS) in serum. Meanwhile, oligofructose altered composition of the hindgut bacterial community, demonstrated by increasing relative abundance of Lactobacillus and Megasphaera. In addition, the metabolome analysis revealed that treatment with oligofructose decreased 84 metabolites while 53 metabolites increased, such as dihydrothymine, N3,N4-Dimethyl-L-arginine, 10E,12Z-Octadecadienoic acid, and asparagine. Pathway analysis revealed that aldosterone synthesis and secretion, regulation of lipolysis in adipocytes, steroid hormone biosynthesis, pyrimidine metabolism, biosynthesis of unsaturated fatty acids, and galactose metabolism were significantly different between healthy and laminitis horses. Furthermore, correlation analysis between gut microbiota and metabolites indicated that Lactobacillus and/or Megasphaera were positively associated with the dihydrothymine, N3,N4-Dimethyl-L-arginine, 10E,12Z-Octadecadienoic acid, and asparagine. Conclusions These results revealed that disturbance of gut microbiota and changes of metabolites were occurred during the development of equine laminitis, and these results may provide novel insights to detect biomarkers for a better understanding of the potential mechanism and prevention strategies for laminitis in horses.
Allergic diseases are becoming a major healthcare issue in many developed nations, where living environment and lifestyle are most predominantly distinct. Such differences include urbanized, industrialized living environments, overused hygiene products, antibiotics, stationary lifestyle, and fast-food-based diets, which tend to reduce microbial diversity and lead to impaired immune protection, which further increase the development of allergic diseases. At the same time, studies have also shown that modulating a microbiocidal community can ameliorate allergic symptoms. Therefore, in this paper, we aimed to review recent findings on the potential role of human microbiota in the gastrointestinal tract, surface of skin, and respiratory tract in the development of allergic diseases. Furthermore, we addressed a potential therapeutic or even preventive strategy for such allergic diseases by modulating human microbial composition.
Microbial communities inhabiting the human body play a crucial role in protecting the host against pathogens and inflammation. Disruptions to the microbial composition can lead to various health issues. Microbial transfer therapy (MTT) has emerged as a potential treatment option to address such issues. Fecal microbiota transplantation (FMT) is the most widely used form of MTT and has been successful in treating several diseases. Another form of MTT is vaginal microbiota transplantation (VMT), which involves transferring vaginal microbiota from a healthy female donor to a diseased patient’s vaginal cavity with the goal of restoring normal vaginal microbial composition. However, VMT has not been extensively studied due to safety concerns and a lack of research. This paper explores the therapeutic mechanisms of VMT and discusses future perspectives. Further research is necessary to advance the clinical applications and techniques of VMT.
Background: Subacute ruminal acidosis (SARA) is a well-recognized metabolic disease that has negative impact on the animal performance and health. SARA in cows is mainly caused by long-term high-concentration diet (HCD) feeding, however, some cows are so well adapted to the HCD that do not develop such condition while others are more susceptible. We speculated the difference may be associated with the rumen microbiota community. Here, we analyzed the rumen bacterial and fungal microbiota from SARA-resistance and SARA-prone cows before and after feeding with HCD for six weeks. Results: The 16S rRNA sequencing analysis showed that the rumen bacterial community in SARA-prone cows had lower bacterial diversity and higher relative abundance of unidentified_Spirochaetaceae and Anaeroplasma comparing to those of SARA-resistance cow. Moreover, the abundance of Stenotrophomonas were increased in SARA-positive compared to SARA-negative cows. In addition, the ITS1-IF sequencing analysis indicated that the abundance of Fusarium_oxysporum and Papiliotrema_laurentii were different in SARA-prone and SARA-resistance cows. Furthermore, feeding with HCD significantly increased the Sarocladium_zea, Meyerozyma_caribbica, and Fusarium_oxysporum, while decreaed Wallemia_sebi in rumen microbiota. These results suggested that the abundance of unidentified_Spirochaetaceae, Anaeroplasma, Fusarium_oxysporum, and Papiliotrema_laurentii in rumen maybe connected to the susceptibility of SARA in dairy cows. In addition, SARA provocation was increased the pathogenic Stenotrophomonas, Sarocladium_zea, Meyerozyma_caribbica, and Fusarium_oxysporum in rumen. Conclusions: This study suggested that manipulating rumen microbiota will serve as a novel approach for preventing the development of SARA in dairy cows in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.