Candida auris, first described in 2009, is an opportunistic pathogenic yeast that causes nosocomial outbreaks around the world, with high mortality rates associated with therapeutic failure. In this study, we evaluated the pathogenicity of 107 isolates from two cities in Colombia, associated with fungemia or colonization processes; to achieve this, we used the Galleria mellonella invertebrate model to compare pathogenicity. Our results showed that less than half of the total isolates of C. auris presented a high pathogenicity compared to the reference strain SC5314, and most of those highly pathogenic strains were from colonization processes. We observed that there was formation of large aggregates of cells that cannot be disrupted easily, without statistically significant differences between the pathogenicity of the aggregated and non-aggregated strains. In addition, protease activity was observed in 100% of the C. auris strains; phospholipase and hemolysin activity were observed in 67.3 and 68.2% of the studied strains, respectively. In conclusion, these results highlight the utility of determining survival using G. mellonella, which allowed us to provide new information on the pathogenicity, enzymatic activity, and the relationship of the aggregated and non-aggregated phenotypes of C. auris in this model.
Cryptococcosis is a potentially fatal opportunistic mycosis that affects the lungs and central nervous system. It has been suggested that certain strains of C. neoformans/C. gattii may have the potential to be more virulent according to the molecular type. This study aims to investigate the association between virulence in the G. mellonella model and genotypic diversity of Colombian clinical and environmental isolates of C. neoformans/C. gattii. A total of 33 clinical and 12 environmental isolates were selected according to their geographical origin and sequence types (STs). Pathogenicity was determined using the G. mellonella model, and the cell and capsular size before and after inoculation was determined. For C. neoformans, virulence in G. mellonella revealed that death occurred on average on day 6 (p < 0.05) and that ST5C, 6C, 25C and 71C were the most virulent. In C. gattii, death occurred at 7.3 days (p < 0.05), and ST47C, 58C, 75A and 106C were the most virulent. Capsular size increased for both species after passage in G. mellonella. In conclusion, the pathogenicity of Cryptococcus strains in the G. mellonella invertebrate model is independent of molecular type or pathogenicity factor, even within the same ST, but it is possible to find variable degrees of pathogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.