Melanocytes are neural crest-derived cells that are responsible for mammalian hair follicle (HF) pigmentation. The Dct-LacZ transgenic mouse is extensively used to study melanocyte biology but lacks conditionally-inducible labelling and fluorescent labelling, enabling specific, viable isolation of melanocytes using fluorescence-activated cell sorting (FACS). Here, we have generated a Tet-off bitransgenic mouse model, Dct-H2BGFP, containing Dct-tTA and TRE-H2BGFP transgenes. Characterization of Dct-H2BGFP mice confirmed a pattern of Dct-H2BGFP expression in melanoblasts, melanocyte stem cells (McSCs), and terminally differentiated melanocytes similar to the expression pattern of previously published mouse models Dct-LacZ and iDct-GFP. GFP expression is regulated by doxycycline. GFP is shown to co-localize with melanocyte label-retaining cells (LRCs) identified through BrdU retention. The GFP-expressing cells identified in vivo in the bulge and the secondary hair germ of telogen HFs of Dct-H2BGFP mice express the melanocyte and melanocyte stem cell markers Dct and Kit. Using Dct-H2BGFP mice, we separated GFP-expressing cells from the telogen HF based on FACS and showed that GFP-expressing cells express high levels of Kit and Dct, and lower levels of HF epithelial keratin genes. We also show that GFP-expressing cells express high levels of the melanocyte differentiation genes Tyr, Tyrp1, and Pmel17, further substantiating their identity within the melanocyte lineage. Thus, Dct-H2BGFP mice are not only useful for the in vivo identification of melanocytic cells, but also for isolating them viably and studying their molecular and biological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.