Introduction: Artificial intelligence models and networks can learn and process dense information in a short time, leading to an efficient, objective, and accurate clinical and histopathological analysis, which can be useful to improve treatment modalities and prognostic outcomes. This paper targets oral pathologists, oral medicinists, and head and neck surgeons to provide them with a theoretical and conceptual foundation of artificial intelligence-based diagnostic approaches, with a special focus on convolutional neural networks, the state-of-the-art in artificial intelligence and deep learning. Methods:The authors conducted a literature review, and the convolutional neural network's conceptual foundations and functionality were illustrated based on a unique interdisciplinary point of view. Conclusion:The development of artificial intelligence-based models and computer vision methods for pattern recognition in clinical and histopathological image analysis of head and neck cancer has the potential to aid diagnosis and prognostic prediction.
Introduction There were more than 1,276,106 new cases of prostate cancer (PC) in 2018 worldwide (GLOBOCAN). Early and precise diagnosis leads to cure chances up to 90%. Digital rectal examination and PSA serum levels are employed for prostate cancer screening. If both exams are suspicious for cancer, the patient will be submitted to a prostate biopsy. Histological diagnosis and grading are crucial to the proper manage of the patients and are not always easy to evaluate, demanding experience of pathologists. To test the possibility to adopt artificial intelligent to diagnose PC, we studied a set of prostate biopsy sample images that were input to a specifically constructed convolutional neural network. Purpose Evaluate the potential of the convolutional neural network for the classification of cancer and non-cancer patches extracted from prostate biopsy images. Methods Thirty-two prostate cancer biopsy images were obtained and reviewed by a single uropathologist and then transformed into 2594 fragments to feed the CNN. The methodology has been divided into clinical approaches-to extract patches-and computational approaches-the CNN implementation. Results The k-fold three-way cross-validation method was used, resulting in a 98.3% output accuracy in distinguishing cancer from non-cancer. Conclusion The presented method proved to be robust and trustworthy comparing with an expert pathologist report.
Background The Gleason grading system is an important clinical practice for diagnosing prostate cancer in pathology images. However, this analysis results in significant variability among pathologists, hence creating possible negative clinical impacts. Artificial intelligence methods can be an important support for the pathologist, improving Gleason grade classifications. Consequently, our purpose is to construct and evaluate the potential of a Convolutional Neural Network (CNN) to classify Gleason patterns. Methods The methodology included 6982 image patches with cancer, extracted from radical prostatectomy specimens previously analyzed by an expert uropathologist. A CNN was constructed to accurately classify the corresponding Gleason. The evaluation was carried out by computing the corresponding 3 classes confusion matrix; thus, calculating the percentage of precision, sensitivity, and specificity, as well as the overall accuracy. Additionally, k-fold three-way cross-validation was performed to enhance evaluation, allowing better interpretation and avoiding possible bias. Results The overall accuracy reached 98% for the training and validation stage, and 94% for the test phase. Considering the test samples, the true positive ratio between pathologist and computer method was 85%, 93%, and 96% for specific Gleason patterns. Finally, precision, sensitivity, and specificity reached values up to 97%. Conclusion The CNN model presented and evaluated has shown high accuracy for specifically pattern neighbors and critical Gleason patterns. The outcomes are in line and complement others in the literature. The promising results surpassed current inter-pathologist congruence in classical reports, evidencing the potential of this novel technology in daily clinical aspects.
Background The Gleason grading system is an important clinical practice for diagnosing prostate cancer in pathology images. However, this analysis results in significant variability among pathologists, hence creating possible negative clinical impacts. Artificial intelligence methods can be an important support for the pathologist, improving Gleason grade classifications. Consequently, our purpose is to construct and evaluate the potential of a Convolutional Neural Network (CNN) to classify Gleason patterns. Methods The methodology included 6982 image patches with cancer, extracted from radical prostatectomy specimens previously analyzed by an expert uropathologist. A CNN was constructed to accurately classify the corresponding Gleason. The evaluation was carried out by computing the corresponding 3 classes confusion matrix; thus, calculating the percentage of precision, sensitivity, and specificity, as well as the overall accuracy. Additionally, k-fold three-way cross-validation was performed to enhance evaluation, allowing better interpretation and avoiding possible bias. Results The overall accuracy reached 98% for the training and validation stage, and 94% for the test phase. Considering the test samples, the true positive ratio between pathologist and computer method was 85%, 93%, and 96% for specific Gleason patterns. Finally, precision, sensitivity, and specificity reached values up to 97%. Conclusion The CNN model presented and evaluated has shown high accuracy for specifically pattern neighbors and critical Gleason patterns. The outcomes are in line and complement others in the literature. The promising results surpassed current inter-pathologist congruence in classical reports, evidencing the potential of this novel technology in daily clinical aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.