Background Bone-marrow derived mesenchymal stem cells (MSCs) reduce the severity of evolving acute lung injury (ALI), but their ability to repair the injured lung is not clear. A study was undertaken to determine the potential for MSCs to enhance repair after ventilatorinduced lung injury (VILI) and elucidate the mechanisms underlying these effects. Methods Anaesthetised rats underwent injurious ventilation which produced severe ALI. Following recovery, they were given an intravenous injection of MSCs (2310 6 cells) or vehicle immediately and a second dose 24 h later. The extent of recovery following VILI was assessed after 48 h. Subsequent experiments examined the potential for non-stem cells and for the MSC secretome to enhance VILI repair. The contribution of specific MSC-secreted mediators was then examined in a wound healing model. Results MSC therapy enhanced repair following VILI. MSCs enhanced restoration of systemic oxygenation and lung compliance, reduced total lung water, decreased lung inflammation and histological lung injury and restored lung structure. They attenuated alveolar tumour necrosis factor a concentrations while increasing concentrations of interleukin 10. These effects were not seen with non-stem cells (ie, rat fibroblasts). MSCsecreted products also enhanced lung repair and attenuated the inflammatory response following VILI. The beneficial effect of the MSC secretome on repair of pulmonary epithelial wounds was attenuated by prior depletion of keratinocyte growth factor. Conclusion MSC therapy enhances lung repair following VILI via a paracrine mechanism that may be keratinocyte growth factor-dependent.
Background: Mesenchymal stromal cells (MSCs) have been demonstrated to attenuate acute lung injury when delivered by intravenous or intratracheal routes. The authors aimed to determine the efficacy of and mechanism of action of intratracheal MSC therapy and to compare their efficacy in enhancing lung repair after ventilation-induced lung injury with intravenous MSC therapy. Methods: After induction of anesthesia, rats were orotracheally intubated and subjected to ventilation-induced lung injury (respiratory rate 18 min −1 , P insp 35 cm H 2 O,) to produce severe lung injury. After recovery, animals were randomized to receive: (1) no therapy, n = 4; (2) intratracheal vehicle (phosphate-buffered saline, 300 µl, n = 8); (3) intratracheal fibroblasts (4 × 10 6 cells, n = 8); (4) intratracheal MSCs (4 × 10 6 cells, n = 8); (5) intratracheal conditioned medium (300 µl, n = 8); or (6) intravenous MSCs (4 × 10 6 cells, n = 4). The extent of recovery after acute lung injury and the inflammatory response was assessed after 48 h. Results: Intratracheal MSC therapy enhanced repair after ventilation-induced lung injury, improving arterial oxygenation (mean ± SD, 146 ± 3.9 vs. 110.8 ± 21.5 mmHg), restoring lung compliance (1.04 ± 0.11 vs. 0.83 ± 0.06 ml·cm H 2 O −1 ), reducing total lung water, and decreasing lung inflammation and histologic injury compared with control. Intratracheal MSC therapy attenuated alveolar tumor necrosis factor-α (130 ± 43 vs. 488 ± 211 pg·ml −1) and interleukin-6 concentrations (138 ± 18 vs. 260 ± 82 pg·ml −1 ). The efficacy of intratracheal MSCs was comparable with
A growing understanding of the complexity of the pathophysiology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), coupled with advances in stem cell biology, has led to a renewed interest in the therapeutic potential of stem cells for this devastating disease. Mesenchymal stem cells appear closest to clinical translation, given the evidence that they may favourably modulate the immune response to reduce lung injury, while maintaining host immune-competence and also facilitating lung regeneration and repair. The demonstration that human mesenchymal stem cells exert benefit in the endotoxin-injured human lung is particularly persuasive. Endothelial progenitor cells also demonstrate promise in reducing endothelial damage, which is a key pathophysiological feature of ALI. Embryonic and induced pluripotent stem cells are at an earlier stage in the translational process, but offer the hope of directly replacing injured lung tissue. The lung itself also contains endogenous stem cells, which may ultimately offer the greatest hope for lung diseases, given their physiologic role in replacing and regenerating native lung tissues. However, significant deficits remain in our knowledge regarding the mechanisms of action of stem cells, their efficacy in relevant pre-clinical models, and their safety, particularly in critically ill patients. These gaps need to be addressed before the enormous therapeutic potential of stem cells for ALI/ARDS can be realised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.