Bumblebees are major pollinators of crops and wildflowers in northern temperate regions. Knowledge of their ecology is vital for the design of effective management and conservation strategies but key aspects remain poorly understood. Here we employed microsatellite markers to estimate and compare foraging range and nest density among four UK species: Bombus terrestris, Bombus pascuorum, Bombus lapidarius, and Bombus pratorum. Workers were sampled along a 1.5-km linear transect across arable farmland. Eight or nine polymorphic microsatellite markers were then used to identify putative sisters. In accordance with previous studies, minimum estimated maximum foraging range was greatest for B. terrestris (758 m) and least for B. pascuorum (449 m). The estimate for B. lapidarius was similar to B. pascuorum (450 m), while that of B. pratorum was intermediate (674 m). Since the area of forage available to bees increases as the square of foraging range, these differences correspond to a threefold variation in the area used by bumblebee nests of different species. Possible explanations for these differences are discussed. Estimates for nest density at the times of sampling were 29, 68, 117, and 26/km2 for B. terrestris, B. pascuorum, B. lapidarius and B. pratorum, respectively. These data suggest that even among the most common British bumblebee species, significant differences in fundamental aspects of their ecology exist, a finding that should be reflected in management and conservation strategies.
Summary 1.Foraging range is a key aspect of the ecology of 'central place foragers'. Estimating how far bees fly under different circumstances is essential for predicting colony success, and for estimating bee-mediated gene flow between plant populations. It is likely to be strongly influenced by forage distribution, something that is hard to quantify in all but the simplest landscapes; and theories of foraging distance tend to assume a homogeneous forage distribution. 2. We quantified the distribution of bumblebee Bombus terrestris L. foragers away from experimentally positioned colonies, in an agricultural landscape, using two methods. We massmarked foragers as they left the colony, and analysed pollen from foragers returning to the colonies. The data were set within the context of the 'forage landscape': a map of the spatial distribution of forage as determined from remote-sensed data. To our knowledge, this is the first time that empirical data on foraging distances and forage availability, at this resolution and scale, have been collected and combined for bumblebees. 3. The bees foraged at least 1·5 km from their colonies, and the proportion of foragers flying to one field declined, approximately linearly, with radial distance. In this landscape there was great variation in forage availability within 500 m of colonies but little variation beyond 1 km, regardless of colony location. 4. The scale of B. terrestris foraging was large enough to buffer against effects of forage patch and flowering crop heterogeneity, but bee species with shorter foraging ranges may experience highly variable colony success according to location.
Bumblebees (Hymenoptera: Apidae) are important pollinators of crops and wildflowers, but many species have suffered dramatic declines in recent decades. Strategies for their conservation require knowledge of their foraging range and nesting density, both of which are poorly understood. Previous studies have mainly focussed on the cosmopolitan bumblebee species Bombus terrestris, and implicitly assume this to be representative of other species. Here we use a landscape-scale microsatellite study to estimate the foraging range and nesting density of two ecologically dissimilar species, B. terrestris and B. pascuorum. Workers were sampled along a 10 km linear transect and 8–9 polymorphic microsatellite markers used to identify putative sisters. We provide the first published estimates of the number of colonies using a circle of radius 50 m in an agricultural landscape: 20.4 for B. terrestris and 54.7 for B. pascuorum. Estimates of nest density differed significantly between the two species: 13 km−2 for B. terrestris and 193 km−2 for B. pascuorum. Foraging ranges also differed substantially, with B. pascuorum foraging over distances less than 312 m and B. terrestris less than 625 m. Clearly bumblebee species differ greatly in fundamental aspects of their ecology. This has significant implications for the development of conservation strategies for rare bumblebees and isolated plant populations, for the management of bumblebees as pollinators, and for predicting patterns of gene flow from genetically modified plants
Repeated evolution of the same phenotypic difference during independent episodes of speciation is strong evidence for selection during speciation. More than 1,000 species of cichlids, >10% of the world's freshwater fish species, have arisen within the past million years in Lakes Malawi and Victoria in eastern Africa. Many pairs of closely related sympatric species differ in their nuptial coloration in very similar ways. Nuptial coloration is important in their mate choice, and speciation by sexual selection on genetically or ecologically constrained variation in nuptial coloration had been proposed, which would repeatedly produce similar nuptial types in different populations, a prediction that was difficult to test in the absence of population-level phylogenies. We measured genetic similarity between individuals within and between populations, species, and lake regions by typing 59 individuals at >2,000 polymorphic genetic loci. From these data, we reconstructed, to our knowledge, the first larger species level phylogeny for the most diverse group of Lake Malawi cichlids. We used the genetic and phylogenetic data to test the divergent selection scenario against colonization, character displacement, and hybridization scenarios that could also explain diverse communities. Diversity has arisen by replicated radiations into the same color types, resulting in phenotypically very different, yet closely related, species within and phenotypically highly similar yet unrelated sets of species between regions, which is consistent with divergent selection during speciation and is inconsistent with colonization and character displacement models. R epeated differentiation into the same pairs of ecological or mating phenotypes during independent episodes of speciation is strong evidence for speciation by selection (1-3). Because species continue to diverge in other traits after speciation, such pairs are most readily detected where many species have recently diverged from few ancestors, as in geologically young adaptive radiations (4). The haplochromine cichlids in Lakes Victoria and Malawi in eastern Africa (5) form the largest recent adaptive radiations of vertebrates and account for Ͼ10% of the world's freshwater fish species (6-8). Parallel origins of similar morphologies in different lakes has been documented (9), but closely related species within each lake generally have similar morphologies (10), but differ in nuptial color patterns, often in similar ways (11-13). Nuptial coloration is important in their mate choice (13,14) and speciation by sexual selection on genetically or ecologically constrained variation in nuptial coloration had been proposed to explain its rapid evolution (15, 16). Other candidate explanations include genetic drift in small populations and reproductive character displacement in secondary sympatry.Even in the stenotopic rock-dwelling Mbuna group, populations rarely show the genetic imprints of bottlenecks (6,17), and the number of migrants between populations is typically too large for divergen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.