Our objective was to establish a diabetes mellitus type 2 (DM2) model in rats using a highfat diet and streptozotocin (HF-STZ). Male Wistar rats (240-250g) were divided into a control group (commercial feed), and HF-STZ group, (66.5%-commercial feed, 13.5%-lard, and 20%-sugar). STZ (40mg/kg i.p.) or vehicle was administered on the 13 th day. An oral glucose tolerance test (OgTT) was performed (2.5mg of glucose/kg v.o.) on both groups. After 39 days of treatment, blood and tissue samples were collected for analyses. The weight gain after STZ administration was lower in the HF-STZ group than in the control group with reductions in muscle mass and adipose tissue. The HF-STZ group showed hyperglycemia after STZ administration (glucose on day 39: HF-STZ: 499 ± 60; control: 134 ± 9mg/ dl). Serum glucagon was 23% lower, and insulin levels were unaltered. The HOMA index was 4-times higher in the HF-STZ. The HF-STZ group showed increased post-prandial (330%) and fasting (125%) triglycerides, and while glycogen content in the liver and muscles decreased (70-80%). The area under the curve (OgTT) was 282% higher in the HF-STZ group. The combination of high-fat diet with STZ (i.p) generated rats with hyperglycemia associated with hypertriglyceridemia and introduced many other alterations present in human DM2.
Protein restriction led to an increase in EE, with probable activation of thermogenesis in brown adipose tissue, evidenced by an increase in catecholamines levels. Despite the higher EE, energetic gain and lipids increased. The high level of leptin associated with hyperphagia led to the supposition that these animals are leptin resistant, and the increase in insulin sensitivity, suggested by the relation between insulin and glycemia in fasting and fed animals, might contribute to lipid accumulation.
The aim of this study was to evaluate thermogenesis in the interscapular brown adipose tissue (IBAT) of rats submitted to low-protein, high-carbohydrate (LPHC) diet and the involvement of adrenergic stimulation in this process. Male rats (~100 g) were submitted to LPHC (6%-protein; 74%-carbohydrate) or control (C; 17%-protein; 63%-carbohydrate) isocaloric diets for 15 days. The IBAT temperature was evaluated in the rats before and after the administration of noradrenaline (NA) (20 µg 100 g b w(-1) min(-1)). The expression levels of uncoupling protein 1 (UCP1) and other proteins involved in the regulation of UCP1 expression were determined by Western blot (Student's t test, P ≤ 0.05). The LPHC diet promoted a 1.1 °C increase in the basal temperature of IBAT when compared with the basal temperature in the IBAT of the C group. NA administration promoted a 0.3 °C increase in basal temperature in the IBAT of the C rats and a 0.5 °C increase in the IBAT of the LPHC group. The level of UCP1 increased 60% in the IBAT of LPHC-fed rats, and among the proteins involved in its expression, such as β3-AR and α1-AR, there was a 40% increase in the levels of p38-MAPK and a 30% decrease in CREB when compared to the C rats. The higher sympathetic flux to IBAT, which is a consequence of the administration of the LPHC diet to rats, activates thermogenesis and increases the expression of UCP1 in the tissue. Our results suggest that the increase in UCP1 content may occur via p38 MAPK and ATF2.
A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-α, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-¹⁴C]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-¹⁴C]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.