The HOMER1 gene is involved in synaptic plasticity, learning and memory. Recent studies show that circular RNA derived from HOMER1 (circHOMER1) expression is altered in some Alzheimer’s disease (AD) brain regions. In addition, HOMER1 messenger (mRNA) levels have been associated with β-Amyloid (Aβ) deposits in brain cortical regions. Our aim was to measure the expression levels of HOMER1 circRNAs and their linear forms in the human AD entorhinal cortex. First, we showed downregulation of HOMER1B/C and HOMER1A mRNA and hsa_circ_0006916 and hsa_circ_0073127 levels in AD female cases compared to controls by RT-qPCR. A positive correlation was observed between HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073128 with HOMER1B/C protein only in females. Global average area of Aβ deposits in entorhinal cortex samples was negatively correlated with HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073127 in both genders. Furthermore, no differences in DNA methylation were found in two regions of HOMER1 promoter between AD cases and controls. To sum up, we demonstrate that linear and circular RNA variants of HOMER1 are downregulated in the entorhinal cortex of female patients with AD. These results add to the notion that HOMER1 and its circular forms could be playing a female-specific role in the pathogenesis of AD.
Mitochondrial DNA (mtDNA) defects have been postulated to play an important role in the modulation and/or progression of cancer. In the past decade, a wide spectrum of mtDNA variations have been suggested as potentially sensitive and specific biomarkers for several human cancer types. In this context, single nucleotide polymorphisms (SNPs) described as protective or risk variants have been published, in particular in breast cancer, though not without controversy. Moreover, many mtDNA haplogroups have been associated with different phenotypes and diseases. We genotyped 18 SNPs, 15 of them defining European mtDNA haplogroups, including SNPs described as protective or risk variants, 7 SNPs that determine BRCA1 haplotypes and a BRCA1 intron 7 polymorphism. We included in this study 90 Caucasian unrelated women with breast cancer with familial criteria and 96 controls. Our aim was to clarify the importance of any of these SNPs, mitochondrial haplogroups and BRCA1 haplotypes in the modulation of breast cancer. We detected no significant differences in the distribution of BRCA1 haplotypes between patients and controls. Haplogroup U and the 12308G variant of mtDNA were overrepresented within the control group (p = 0.005 and p = 0.036, respectively) compared to breast cancer. Finally, we identified a significant association between the BRCA1 intron 7 polymorphism and BRCA1 haplotypes. Specifically, (TTC)6/6 and (TTC)6/7 genotypes with the seven polymorphic site cassette of "H2-like" haplotypes, and the (TTC)7/7 genotype associated with the "H1-like" haplotypes (p < 0.001).
Genetic variants in TREM2, a microglia-related gene, are well-known risk factors for Alzheimer’s disease (AD). Here, we report that TREM2 originates from circular RNAs (circRNAs), a novel class of non-coding RNAs characterized by a covalent and stable closed-loop structure. First, divergent primers were designed to amplify circRNAs by RT-PCR, which were further assessed by Sanger sequencing. Then, additional primer sets were used to confirm back-splicing junctions. In addition, HMC3 cells were used to assess the microglial expression of circTREM2s. Three candidate circTREM2s were identified in control and AD human entorhinal samples. One of the circRNAs, circTREM2_1, was consistently amplified by all divergent primer sets in control and AD entorhinal cortex samples as well as in HMC3 cells. In AD cases, a moderate negative correlation (r = −0.434) was found between the global average area of Aβ deposits in the entorhinal cortex and circTREM2_1 expression level. In addition, by bioinformatics tools, a total of 16 miRNAs were predicted to join with circTREM2s. Finally, TREM2 mRNA corresponding to four isoforms was profiled by RT-qPCR. TREM2 mRNA levels were found elevated in entorhinal samples of AD patients with low or intermediate ABC scores compared to controls. To sum up, a novel circRNA derived from the TREM2 gene, circTREM2_1, has been identified in the human entorhinal cortex and TREM2 mRNA expression has been detected to increase in AD compared to controls. Unraveling the molecular genetics of the TREM2 gene may help to better know the innate immune response in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.