CAD/CAM technologies and materials have the potential to improve the treatment of Robin Sequence with orthodontic appliances (Tübingen palatal plate, TPP). However, studies on the provided suitability and safety are lacking. The present study evaluates CAD/CAM technologies and materials for implementation into the workflow for producing these orthodontic appliances (TPPs), manufactured by different techniques and materials: additive manufacturing (AM) and subtractive manufacturing (SM) technologies vs. conventional manufacturing. The fracture load was obtained in a universal testing machine, and the breaking behavior of each bunch, as well as the necessity of adding a safety wire, was evaluated. The minimum fracture load was used to calculate the safety factor (SF) provided by each material. Secondary factors included manufacturing time, material cost and reproducibility. Dental LT clear showed the highest fracture load and best breaking behavior among AM materials. The highest fracture load and safety factor were obtained with Smile polyether ether ketone (PEEK). For the prototyping stage, the use of a Freeprint tray (SF = 114.145) is recommended. For final manufacturing, either the cost-effective approach, Dental LT clear (SF = 232.13%), or the safest but most expensive approach, Smile PEEK (SF = 491.48%), can be recommended.
Different approaches for digital workflows have already been presented for their use in palatal plates for newborns and infants. However, there is no evidence on the accuracy of CAD/CAM manufactured orthodontic appliances for this kind of application. This study evaluates trueness and precision provided by different CAM technologies and materials for these appliances. Samples of a standard palatal stimulation plate were manufactured using stereolithography (SLA), direct light processing (DLP) and subtractive manufacturing (SM). The effect of material (for SM) and layer thickness (for DLP) were also investigated. Specimens were digitized with a laboratory scanner (D2000, 3Shape) and analyzed with a 3D inspection software (Geomagic Control X, 3D systems). For quantitative analysis, differences between 3D datasets were measured using root mean square (RMS) error values for trueness and precision. For qualitative analysis, color maps were generated to detect locations of deviations within each sample. SM showed higher trueness and precision than AM technologies. Reducing layer thickness in DLP did not significantly increase accuracy, but prolonged manufacturing time. All materials and technologies met the clinically acceptable range and are appropriate for their use. DLP with 100 µm layer thickness showed the highest efficiency, obtaining high trueness and precision within the lowest manufacturing time.
This study evaluates the masticatory efficiency in patients with craniofacial disorders (CD) compared to controls (C). A total of 119 participants (7–21 years), divided into CD group (n = 42, mean age 13.45 ± 5.2 years) and C group (n = 77, mean age 14.3 ± 3.27 years) under an orthodontic treatment were included. Masticatory efficiency was assessed using a standard food model test. The masticated food was examined according to its number of particles (n) and area (mm2), wherein a higher number of particles alongside a smaller area was an indication of better masticatory efficiency. Additionally, the influence of cleft formation, chewing side, dentition stage, age and sex were evaluated. Patients with CD chewed the standardized food in fewer particles (nCD = 61.76 vs. nC = 84.58), with a significantly higher amount of area than the controls (ACD = 192.91 mm2 vs. AC = 146.84 mm2; p = 0.04). In conclusion, patients with CD showed a significantly decreased mastication efficiency compared to healthy patients. Factors such as stage of cleft formation, chewing side, dentition stage and age showed an influence on masticatory efficiency, whereas no gender effect on the masticatory efficiency of CD patients was found.
The objective of this study was to present a methodology and manufacturing workflow for non-invasive ventilation interfaces (NIV) for neonates and small infants. It aimed to procure a fast and feasible solution for personalized NIV produced in-house with the aim of improving fit and comfort for the patient. Three-dimensional scans were obtained by means of an intraoral (Trios 3) and a facial scanner (3dMd Flex System). Fusion 360 3D-modelling software was employed to automatize the design of the masks and their respective casting molds. These molds were additively manufactured by stereolithography (SLA) and fused filament fabrication (FFF) technologies. Silicone was poured into the molds to produce the medical device. In this way, patient individualized oronasal and nasal masks were produced. An automated design workflow and use of additive manufacturing enabled a fast and feasible procedure. Despite the cost for individualization likely being higher than for standard masks, a user-friendly workflow for in-house manufacturing of these medical appliances proved to have potential for improving NIV in neonates and infants, as well as increasing comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.