A new procedure for room-temperature storage of DNA was evaluated whereby DNA samples from human tissue, bacteria, and plants were stored under an anoxic and anhydrous atmosphere in small glass vials fitted in stainless-steel, laser-sealed capsules (DNAshells(®)). Samples were stored in DNAshells(®) at room temperature for various periods of time to assess any degradation and compare it to frozen control samples and those stored in GenTegra™ tubes. The study included analysis of the effect of accelerated aging by using a high temperature (76°C) at 50% relative humidity. No detectable DNA degradation was seen in samples stored in DNAshells(®) at room temperature for 18 months. Polymerase chain reaction experiments, pulsed field gel electrophoresis, and amplified fragment length polymorphism analyses also demonstrated that the protective properties of DNAshells(®) are not affected by storage under extreme conditions (76°C, 50% humidity) for 30 hours, guaranteeing 100 years without DNA sample degradation. However, after 30 hours of storage at 76°C, it was necessary to include adjustments to the process in order to avoid DNA loss. Successful protection of DNA was obtained for 1 week and even 1 month of storage at high temperature by adding trehalose, which provides a protective matrix. This study demonstrates the many advantages of using DNAshells(®) for room-temperature storage, particularly in terms of long-term stability, safety, transport, and applications for molecular biology research.
The Ski2‐Ski3‐Ski8 (SKI) complex assists the RNA exosome during the 3′ to 5′ degradation of cytoplasmic transcripts. Previous reports showed that the SKI complex is involved in the 3′ to 5′ degradation of mRNAs, including 3′ untranslated regions (UTRs) and devoid of ribosomes. Paradoxically, we recently showed that the SKI complex directly interacts with ribosomes during the co‐translational mRNA decay and that this interaction is necessary for its RNA degradation promoting activity. Here, we characterised a new SKI‐associated factor, Ska1, that associates with a subpopulation of the SKI complex. We showed that Ska1 is specifically involved in the degradation of long 3′UTR‐containing mRNAs, poorly translated mRNAs as well as other RNA regions not associated with ribosomes, such as cytoplasmic lncRNAs. We further show that the overexpression of SKA1 antagonises the SKI‐ribosome association. We propose that the Ska1‐SKI complex assists the cytoplasmic exosome in the absence of direct association of the SKI complex with ribosomes.
A spore-forming, rod-shaped Gram-strain-positive bacterium, strain 656.84T , was isolated from human faeces in 1984. It contained anteiso-C 15 : 0 as the major cellular fatty acid, mesodiaminopimelic acid was found in the cell wall peptidoglycan, the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and aminophospholipids as the major components, and the predominant menaquinone was MK-7. The DNA G+C content was 52.9 mol%.
mRNA degradation is one of the main steps of gene expression, and a key player is the 5'-3' exonuclease Xrn1. In Saccharomyces cerevisiae, it was previously shown, by a microscopy approach, that Xrn1 is located to different cellular compartments, depending on physiological state. During exponential growth, Xrn1 is distributed in the cytoplasm, while it is present in the eisosomes after the post-diauxic shift (PDS). Here, we biochemically characterized the Xrn1-associated complexes in different cellular states. We demonstrate that, after PDS, Xrn1 but not the decapping (DCP), nor Lsm1-7/Pat1 complexes, was sequestered in the eisosomes, thus preserving mRNAs from degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.