Household air pollution from use of solid fuels is a major contributor to the national burden of disease in India. Currently available models of advanced combustion biomass cook-stoves (ACS) report significantly higher efficiencies and lower emissions in the laboratory when compared to traditional cook-stoves, but relatively little is known about household level exposure reductions, achieved under routine conditions of use. We report results from initial field assessments of six commercial ACS models from the states of Tamil Nadu and Uttar Pradesh in India. We monitored 72 households (divided into six arms to each receive an ACS model) for 24-h kitchen area concentrations of PM2.5 and CO before and (1-6 months) after installation of the new stove together with detailed information on fixed and time-varying household characteristics. Detailed surveys collected information on user perceptions regarding acceptability for routine use. While the median percent reductions in 24-h PM2.5 and CO concentrations ranged from 2 to 71% and 10-66%, respectively, concentrations consistently exceeded WHO air quality guideline values across all models raising questions regarding the health relevance of such reductions. Most models were perceived to be sub-optimally designed for routine use often resulting in inappropriate and inadequate levels of use. Household concentration reductions also run the risk of being compromised by high ambient backgrounds from community level solid-fuel use and contributions from surrounding fossil fuel sources. Results indicate that achieving health relevant exposure reductions in solid-fuel using households will require integration of emissions reductions with ease of use and adoption at community scale, in cook-stove technologies. Imminent efforts are also needed to accelerate the progress towards cleaner fuels.
There is a growing discussion about the possibility of arsenic mitigation measures in Bengal and similar areas leading to undesirable substitution of water-borne-pathogen attributable risks pathogens for risks attributable to arsenic, in part because of uncertainties in relative pathogen concentrations in supplied and end-use water. We try to resolve this discussion, by assessing the relative contributions of water supply and end-user practices to
OPEN ACCESSWater 2014, 6 1101 water-borne-pathogen-attributable risks for arsenic mitigation options in a groundwater arsenic impacted area of West Bengal. Paired supplied arsenic-mitigated water and end-use drinking water samples from 102 households were collected and analyzed for arsenic and thermally tolerant coliforms [TTC], used as a proxy for microbiological water quality, We then estimated the DALYs related to key sequelae, diarrheal diseases and cancers, arising from water-borne pathogens and arsenic respectively. We found [TTC] in end-use drinking water to depend only weakly on [TTC] in source-water. End-user practices far outweighed the microbiological quality of supplied water in determining diarrheal disease burden.[TTC] in source water was calculated to contribute <1% of total diarrheal disease burden. No substantial demonstrable pathogen-for-arsenic risk substitution attributable to specific arsenic mitigation of supplied waters was observed, illustrating the benefits of arsenic mitigation measures in the area studied.
Introduction:The role of serum Monocyte Chemoattractant Protein-1 (MCP-1) as a biomarker of periodontitis is well documented; however, its role in diabetic patients with periodontitis is unknown.Aim:This study was conducted to determine the presence and concentration of serum MCP-1 in diabetic patients with and without periodontitis and correlate it glycemic status with periodontitis.Materials and Methods:Adult diabetic patients were enrolled and grouped into group I, II, and III based on their glycemic status and serum MCP-1 estimated by ELISA. Linear regression and correlation tests were performed using R statistical software, Medcalc software to observe correlation between the serum MCP-1 and glycated hemoglobin level among different groups.Results:Serum samples obtained from 37 patients tested positive for MCP-1. Mean serum MCP-1 concentration was highest (482.3 pg/ml) in group III, lowest (149.3 pg/ml) in group I, and intermediate 398.8 pg/ml in group II. Correlation and regression analysis was done between HbA1c and serum MCP-1. A significant positive correlation (P < 0.001) was observed. Serum MCP-1 increased by 37.278 pg/ml for every 1% rise in HbA1c, and the levels were raised in group II and group III than in group I irrespective of their glycemic status. With an HbA1c range of 6.5-6.9% (group II), the serum MCP-1 values cluster around 380-410 pg/ml. Elevated levels of serum MCP-1 (>500 pg/ml) in three subjects corresponded to HbA1c values more than 12.2% (group III).Conclusion:To our knowledge, this is the first study to document serum MCP-1 levels in diabetic patients with periodontitis. Glycemic status influences serum MCP-1, and lack of glycemic control contributes to increased serum MCP-1 levels. Serum MCP-1 may thus serve as a biomarker of inflammation and disease progression in diabetes with periodontitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.