INTRODUCTION: Mobile Adhoc Network (MANET) is integrated with Internet of Things (IoT) in many application cases due to its flexibility and scalability. The dynamic nature of MANET introduces some security threats in IoT environment. In those threats, Blackhole attack and Grayhole attack are severe routing attacks that disrupts routing algorithm to crack transmission in the entire network. OBJECTIVES: Many security mechanisms are introduced in MANET based on trust computation schemes. However, computation of inaccurate trust value degrades the performance of mitigation schemes. Thus the major objective of this work is to design a novel security mechanism to protect the MANET-IoT from different adversaries. METHODS: in this paper we propose a novel group based routing algorithm with recommendation filtering supported by security monitors (SMs). Unsupervised machine learning algorithm is adapted for the purpose of recommendation filtering in the network. Initially the entire network is grouped by Secure Certificate based Group Formation (SCGF) algorithm. In each group, Recommendation Filtering by K-means algorithm (RF-K means) algorithm is employed to perform trust computation. For secure and optimal route selection, hybrid optimization algorithm that combines Genetic Algorithm and Fire Fly Algorithm (GA-FFA) is proposed. Data transmission is protected by novel Hash Message Authentication Code with Advanced Encryption Standard (HMAC-AES) algorithm in which hash function is integrated with cryptography function. RESULTS: The proposed work is validated in network simulator-3 environment and the obtained results show better performance in terms of packet delivery ratio (96.3%), throughput (135kbps), delay (3.26ms), detection rate (99%), and energy consumption (8.5%). CONCLUSION: The MANET-IoT network is secured by group formation and trust filtering approaches. Further, involvement of cryptography function ensures data security whereas hash function ensures data integrity..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.