Exosomes, first isolated 30 years ago, are nanoscale vesicles shed by most types of cells. The nucleic acid rich content of these nanoparticles, floating in virtually all bodily fluids, has great potential for non-invasive molecular diagnostics and may represent a novel therapeutic delivery system. However, current isolation techniques such as ultracentrifugation are not convenient and do not result in high purity isolation. This represents an interesting challenge for microfluidic technologies, from a cost-effective perspective as well as for enhanced purity capabilities, and point-of-care acquisition and diagnosis. In this frontier review, we present the current challenges, comment the first microfluidic advances in this new field and propose a roadmap for future developments. This review enables biologists and clinicians familiar with exosome enrichment to assess the performance of novel microfluidic devices and, equally, enables microfluidic engineers to educate themselves about this new class of promising biomarker-rich particles and the challenges arising from their clinical use.
Plasma is a rich mine of various biomarkers including proteins, metabolites and circulating nucleic acids. The diagnostic and therapeutic potential of these analytes has been quite recently uncovered, and the number of plasma biomarkers will still be growing in the coming years. A significant part of the blood plasma preparation is still handled manually, off-chip, via centrifugation or filtration. These batch methods have variable waiting times, and are often performed under non-reproducible conditions that may impair the collection of analytes of interest, with variable degradation. The development of miniaturised modules capable of automated and reproducible blood plasma separation would aid in the translation of lab-on-a-chip devices to the clinical market. Here we propose a systematic review of major plasma analytes and target applications, alongside existing solutions for micro-scale blood plasma extraction, focusing on the approaches that have been biologically validated for specific applications.
Circulating biomarkers are on the verge of becoming powerful diagnostic tools for various human diseases. However, the complex sample composition makes it difficult to detect biomarkers directly from blood at the bench or at the point-of-care. Blood cells are often a source of variability of the biomarker signal. While the interference of hemoglobin is a long known source of variability, the release of nucleic acids and other cellular components from hemocytes is a new concern for measurement and detection of circulating extracellular markers. Research into miniaturised blood plasma separation has been thriving in the last 10 years (2006-2016). Most point-of-care systems need microscale blood plasma separation, but developed solutions differ in complexity and sample volume range. But could blood plasma separation be avoided completely? This focused review weights the advantages and limits of miniaturised blood plasma separation and highlights the most interesting advances in direct capture as well as smart blood plasma separation.
The separation of red blood cells from plasma flowing in microchannels is possible by biophysical effects such as the Zweifach-Fung bifurcation law. In the present study, daughter channels are placed alongside a main channel such that cells and plasma are collected separately. The device is aimed to be a versatile but yet very simple module producing high-speed and high-efficiency plasma separation. The resulting lab-on-a-chip is manufactured using biocompatible materials. Purity efficiency is measured for mussel and human blood suspensions as different parameters, such as flow rate and geometries of the parent and daughter channels are varied. The issues of blood plasma separation at the microscale are discussed in relation to the different regimes of flow. Results are compared with those obtained by other researchers in the field of micro-separation of blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.