Purpose MicroRNA-218 (miR-218) is a key regulator of numerous processes relevant to tumor progression. In the present study, we aimed to characterize the relationship between miR-218 and the Epidermal Growth Factor Receptor (EGFR) as well as to understand downstream effects in triple-negative breast cancer (TNBC). Methods We assessed miR-218 and EGFR expression in cell lines and publicly available primary breast cancer gene expression data. We then overexpressed miR-218 in two TNBC cell lines and investigated effects on EGFR and downstream mitogen-activated protein (MAP) kinase signaling. Luciferase reporter assay was used to characterize a direct binding interaction between miR-218 and EGFR mRNA. Digital holographic microscopy helped investigate cell migration and dry mass after miR-218 overexpression. Cell division and invasion were assessed microscopically, while radiation response after miR-218 overexpression alone or combined with additional EGFR knockdown was investigated via clonogenic assays. Results We found an inverse correlation between EGFR expression and miR-218 levels in cell lines and primary breast cancer tissues. MiR-218 overexpression resulted in a downregulation of EGFR via direct binding of the mRNA. Activation of EGFR and downstream p44/42 MAPK signaling were reduced after pre-miR-218 transfection. Cell proliferation, motility and invasiveness were inhibited whereas cell death and mitotic catastrophe were upregulated in miR-218 overexpressing cells compared to controls. MiR-218 overexpressing and EGFR siRNA-treated cells were sensitized to irradiation, more than miR-218 overexpressing cells alone. Conclusion This study characterizes the antagonistic relationship between miR-218 and EGFR. It also demonstrates downstream functional effects of miR-218 overexpression, leading to anti-tumorigenic cellular changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.