Arthropod animals like scorpions with modular body parts can be an inspiration for a robot’s structure. The design presented here relays on inter-connected origami towers, but could also be easily disassembled. Each origami tower is fully autonomous and at the same time is part of the robot as a whole. The towers are positioned between two platforms that enable modularity. The scorpion’s tale shape is achieved by the varying platform diameter resulting in cone-like form. Each tower is actuated independently to enable multiple degrees of freedom. Maneuvering with separated units, assists in easier reparation as well as replacement. Detaching the towers into separate parts makes this structure develop more precise movements, since every unit will move autonomously. Therefore, having a higher number of separated movements combined leads to a smooth bionic movement. So, the overall hierarchy will be modular contributing to a greater curvature bending of the whole structure. Actuating and maneuvering the robot in the main concept is done by separated electro motors, built in the platform. The basic structure will be built from thick paper with plastic coatings. The thick paper itself is lightweight, but at the same time flexible. To protect the paper towers, double plastic foil is placed as an outer coating which acts as an origami cover. This transparent layer is elastic hence it can follow and support the individual units’ movements. This work is focused on understanding origami towers kinematics and different combinations of inter-connected towers to achieve multiple degrees of freedom. A conceptual model is developed, supported by CAD and mathematical models. At the end a prototype is presented.
The fault detection of rotating electrical machines has become very attractive field of research from vibrational aspect, because these machines are susceptible to failure due to thermal, electrical, mechanical or environmental stresses. Therefore, the vibrational analysis of generators as rotating machines will be beneficial for the generator design in the initial stage and also for online monitoring and faults diagnostics during generator operation. This paper presents a novel methodology for hammer impact testing ("bump-test") of stators end-winding vibrations with an accent on the influence of the physical parameters such as temperature. Introductory, a brief survey of recent research in the area is presented. Furthermore, a detailed description of the used instrumentation and conducted testing methodology according to established standards is systematically exposed. The measurement methodology is implemented on two generators, a cold one in its' repairing phase and second identical, generator in a warm condition in order to detect the damaged elements and to investigate the influence of the temperature on the dynamic characteristics (natural frequencies and rigidity) of the structures. A year later, series of same measurements on one of the generators during a process of its' cooling were conducted. This work provides graphical, as well as numerical results for the dynamical behaviour of the structures under different thermal conditions. Ultimately, a conclusion for the dependence between the temperature and the dynamics parameters of the generator is drawn.
The space exploration activities are merging new technologies in order to develop systems challenged to achieve capabilities for high mission experience. Inspired by the numerous applications in space exploration, with the integration of shape memory alloys (SMAs), a 3D printed continuous All Terrain Grasper Transport (AT-GT) vehicle with implemented multi-locomotion grasper was created. In order to reduce failure of the mechanical system, the vehicle is equipped with SMA suspension and SMA tensioner of a pulley system with adaptable height able to achieve movement on a given trajectory and adjust to any terrain. SMA actuators provide controllable actuation based on the simplicity of their design and the shape memory effect. By using the advantages of the origami engineering, soft robotics and smart material implementation, a bio-inspired autonomous grasper was integrated on the AT-GT, capable of leaving the vehicle, grabbing an object and bringing it back to the vehicle. The concept development, the analytical models and the prototype including the benefits of the combined work of the vehicle and the grasper are presented.
Active noise control systems have become a subject of intensive worldwide research that have aroused considerable interest as being a promising solution to the problem of low-frequency noise control. Advanced real-time signal processing technologies offer opportunities that have been adopted in many active noise control industry applications, as well as in the modern urban environment where noise reduction is gaining priority status. Depending on the application, the concept of active sound control can be implemented using different control strategies. The development and application of such systems requires in-depth knowledge and theoretical analysis in the field of digital signal processing, sensor technology, adaptive control, understanding in hardware solutions for acquisition and data processing, as well as software capabilities for modeling, visualization and control of signals. Also, the construction of such a system must give an overview of the choice and characteristics of its components in terms of the impact of the elements that make it up on its accomplishment. This paper provides an insight into the engineering aspects for implementation of an active noise control system in a duct, emphasizing all technical requirements that need to be analyzed and might further affect the systems overall performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.