The dynamics of tight junctions (TJs) and adherens junctions (AJs) under EGTA treatment were investigated in Madin Darby canine kidney (MDCK) cells. Detailed information about the behavior of TJ and AJ proteins during the opening and resealing of TJs and AJs is still scarce. By means of the "calcium chelation" method, the distribution and colocalization of junctional proteins were studied with confocal laser scanning microscopy using a deconvolution algorithm for high-resolution images. Colocalization was analyzed for pairs of the following proteins: ZO-1, occludin, claudin-1, E-cadherin and F-actin. Significant differences were found for the analyzed pairs in control cells compared to EGTA-treated cells with respect to the position of the colocalization maxima within the cell monolayers as well as with respect to the amount of colocalized voxels. Under EGTA treatment, colocalization for ZO-1/occludin, ZO-1/claudin-1, claudin-1/occludin, E-cadherin/occludin and E-cadherin/claudin-1 dropped below 35% of the control value. Only for the ZO-1/E-cadherin pair, the amount of colocalized voxels increased and a shift to a more basal position was observed. During the opening of TJs and AJs, ZO-1 colocalized with E-cadherin in the lateral membrane region, whereas in controls, ZO-1 colocalized with occludin and claudin-1 in the junctional complex. The combination of deconvolution with colocalization analysis of confocal data sets offers a powerful tool to investigate the spatial relationship of TJ and AJ proteins during assembly and disassembly of cell-cell contacts.
Human monoclonal antibodies are promising agents for the development of more selective anticancer therapeutics. However, the tumor-targeting efficiency of most anticancer antibodies is severely limited by their poor penetration into the tumor mass. Recent studies have shown that a peptide derived from the HIV TAT protein could improve the distribution of cytoplasmic reporter proteins when administered systemically as fusion proteins or cross-linked chimeras. In this article, we tested by quantitative biodistribtution analysis whether conjugation to TAT peptides could improve the tumor targeting properties of scFv(L19)-Cys: an engineered human antibody fragment specific for the ED-B domain of fibronectin, a marker located in the modified extracellular matrix surrounding tumor neovasculature. Our results show that TAT peptides, consisting either of L-amino acids or D-amino acids, can efficiently transduce target cells when conjugated to fluorophores and/or antibody fragments, suggesting a receptor-independent cell entry mechanism. However, conjugation of scFv(L19)-Cys to TAT peptides resulted in a severely reduced tumor targeting performance compared to the unconjugated antibody, as measured in murine F9 teratocarcinoma-bearing mice, after intravenous injection of the radiolabeled antibody preparations. Our results outline the usefulness of TAT peptides for the efficient in vitro transduction of cells with globular proteins. In particular, the use of TAT peptides composed of D-amino acids may significantly reduce proteolytic degradation. At the same time, the poor biodistribution properties of antibody-TAT conjugates cast doubts over the applicability of this methodology for the delivery of biopharmaceuticals in vivo.
ECV304 cells reported as originating from human umbilical vein endothelial cells by spontaneous transformation have been used as a model cell line for endothelia over the last decade. Recently, deoxyribonucleic acid fingerprinting revealed an identical genotype for ECV304 and T24 cells (urinary bladder carcinoma cell line). In order to resolve the apparent discrepancy between the identical genotype and the fact that ECV304 cells phenotypically show important endothelial characteristics, a comparative study was performed. Immortalized porcine brain microvascular endothelial cells/C1-2, and Madin Darby canine kidney cells were included as typical endothelial and epithelial cells, respectively. Various methods, such as confocal laser scanning microscopy. Western blot, and protein activity tests, were used to study the cell lines. ECV304 and T24 cells differ in criteria, such as growth behavior, cytoarchitecture, tight junction arrangement. transmembrane electrical resistance, and activity of gamma-glutamyltransferase. Several endothelial markers (von Willebrand factor, uptake of low-density lipoprotein, vimentin) could clearly be identified in ECV304, but not in T24 cells. Desmoglein and cytokeratin, both known as epithelial markers, were found in ECV304 as well as in T24 tells. However, differences were found for the two cell lines with respect to the type of cytokeratin: in ECV304 cells mainly cytokeratin 18 (45 kDa) is found, whereas in T24 cells cytokeratin 8 (52 kDa) is predominant. As we could demonstrate, the ECV304 cell line exposes many endothelial features which, in view of the scarcity of suitable endothelial cell lines, still make it an attractive in vitro model for endothelia.
The identification of proteins that are preferentially expressed on the membrane of metastatic tumor cells is of fundamental importance in cancer research. Here, we report the systematic comparison of the membrane proteome of two closely related murine teratocarcinoma cell lines (F9B9 and F9DR), of which only one (F9DR) is capable of forming liver metastases in vivo. The proteomic methodology used in this study featured the surface protein biotinylation on tumor cells followed by protein purification on streptavidin resin and relative quantification of corresponding tryptic peptides by mass spectrometric procedures. The study allowed the identification of 998 proteins and the determination of their relative abundance. Proteins previously known to be associated with metastatic spread were found to be either up-regulated (e.g., synaptojanin-2) or down-regulated (e.g., Ceacam1) in F9DR cells. A dramatic increase in abundance at the cell membrane was observed for a broad variety of proteins (e.g., highmobility group protein B1), which were mainly thought to reside in intracellular compartments, a finding that was confirmed using confocal laser scanning microscopy and immunochemical analysis of cell cultures. Furthermore, we showed by microautoradiographic analysis that certain target proteins can readily be reached by intravenously administered radiolabeled antibodies. Finally, we showed that the most promising antigens for antibody-based pharmacodelivery approaches are strongly and selectively expressed on the surface of tumor cells in three different syngeneic mouse models of liver metastases. Taken together, our results indicate that the expression of intracellular proteins on the membrane of metastatic cells is a feature much more common than previously expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.