TERT, the protein component of telomerase 1,2 , serves to maintain telomere function through the de novo addition of telomere repeats to chromosome ends and is reactivated in 90% of human cancers. In normal tissues, TERT is expressed in stem cells and in progenitor cells 3 , but its role in these compartments is not fully understood. Here, we show that conditional transgenic induction of TERT in mouse skin epithelium causes a rapid transition from telogen, the resting phase of the hair follicle cycle, to anagen, the active phase, thereby facilitating robust hair growth. TERT overexpression promotes this developmental transition by causing proliferation of quiescent, multipotent stem cells in the hair follicle bulge region. This new function for TERT does not require the telomerase RNA component (TERC), which encodes the template for telomere addition, and therefore operates through a novel mechanism independent of its activity in synthesizing telomere repeats. These data indicate that, in addition to its established role in extending telomeres, TERT can promote proliferation of resting stem cells through a non-canonical pathway. Keywords telomerase; telomere; stem cell; hair follicle; epidermis In stem cell and progenitor cell compartments 3-5 , TERT serves an important role in keeping telomeres sufficiently long and stable to prevent the adverse consequences of dysfunctional telomeres on cell viability and chromosomal stability 6-8 . However, the need for expression of TERT in tissue stem cells and progenitor cells with long telomeres is less clear, especially in laboratory mice, whose telomeres are significantly longer than those of humans (40-60kb vs. 5-15kb). Moreover, recent findings indicate that TERT promotes tumor development even in settings of ample telomere reserve, although the mechanisms underlying these telomere length-independent activities of TERT remain unclear 9-13 . We therefore hypothesized that TERT may exert effects in stem cell and progenitor cell compartments that could explain both its regulation during lineage development and its poorly understood telomere lengthindependent activities.To test this hypothesis, we turned to the mammalian hair follicle, an organ that harbors tightly regulated multipotent stem cells and that cycles between telogen and anagen 14 . Initiation of a new anagen cycle depends upon activation of a small number of quiescent stem cells that reside
Telomerase serves a critical role in stem cell function and tissue homeostasis. This role depends on its ability to synthesize telomere repeats in a manner dependent on the reverse transcriptase (RT) function of its protein component telomerase RT (TERT), as well as on a novel pathway whose mechanism is poorly understood. Here, we use a TERT mutant lacking RT function (TERTci) to study the mechanism of TERT action in mammalian skin, an ideal tissue for studying progenitor cell biology. We show that TERTci retains the full activities of wild-type TERT in enhancing keratinocyte proliferation in skin and in activating resting hair follicle stem cells, which triggers initiation of a new hair follicle growth phase and promotes hair synthesis. To understand the nature of this RT-independent function for TERT, we studied the genome-wide transcriptional response to acute changes in TERT levels in mouse skin. We find that TERT facilitates activation of progenitor cells in the skin and hair follicle by triggering a rapid change in gene expression that significantly overlaps the program controlling natural hair follicle cycling in wild-type mice. Statistical comparisons to other microarray gene sets using pattern-matching algorithms revealed that the TERT transcriptional response strongly resembles those mediated by Myc and Wnt, two proteins intimately associated with stem cell function and cancer. These data show that TERT controls tissue progenitor cells via transcriptional regulation of a developmental program converging on the Myc and Wnt pathways.
Background: It is unclear if asthma and its allergic phenotype are risk factors for hospitalization or severe disease from SARS-CoV-2. Methods: All patients testing positive for SARS-CoV-2 between March 1 and September 30, 2020, were retrospectively identified and characterized through electronic analysis at Stanford. A sub-cohort was followed prospectively to evaluate long-term COVID-19 symptoms. Results: 168,190 patients underwent SARS-CoV-2 testing, and 6,976 (4·15%) tested positive. In a multivariate analysis, asthma was not an independent risk factor for hospitalization (OR 1·12 [95% CI 0·86, 1·45], p=0·40). Among SARS-CoV-2 positive asthmatics, allergic asthma lowered the risk of hospitalization and had a protective effect compared to non-allergic asthma (OR 0·52 (0·28, 0·91), p=0·026); there was no association between baseline medication use as characterized by GINA and hospitalization risk. Patients with severe COVID-19 disease had lower eosinophil levels during hospitalization compared to patients with mild or asymptomatic disease, independent of asthma status (p=0.0014). In a patient sub-cohort followed longitudinally, asthmatics and non-asthmatics had similar time to resolution of COVID-19 symptoms, particularly lower respiratory symptoms. Conclusions: Asthma is not a risk factor for more severe COVID-19 disease. Allergic asthmatics were half as likely to be hospitalized with COVID-19 compared to non-allergic asthmatics. Lower levels of eosinophil counts (allergic biomarkers) were associated with more severe COVID-19 disease trajectory. Recovery was similar among asthmatics and non-asthmatics with over 50% of patients reporting ongoing lower respiratory symptoms three months post-infection.
Overweight (body mass index (BMI) 25 kg m−2) or obesity (BMI 30>kg m−2) affects more than two-thirds of Americans. Overweight and obesity are commonly associated with multiple coexisting conditions, such as hypertension, diabetes, dyslipidemia, cardiovascular disease, obstructive sleep apnea and cancer. Lifestyle modification can induce a modest weight loss, which is associated with the prevention or improvement of many of these comorbidities. A combination of diet, exercise and behavioral therapy is considered the cornerstone of treatment for all overweight and obese individuals. As the etiology and therapy of obesity is complex, what is needed for these patients is a multidisciplinary clinic where specialists from different disciplines share their knowledge and participate in the treatment of the obese patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.