P.O. and Y.A.A. conceptualized the study and designed its experiments. P.O., S.H., and Y.A.A. performed all experiments. S.H. and M.K.B. performed IL-2 ELISA experiments. P.O. performed reanalysis of CyTOF data. S.H. performed analysis of TCGA data. S.G. managed all mouse work and genotyped and bred mice. A.A. assisted in experimental design and provided funding. P.O. wrote the manuscript, and all authors assisted in editing the manuscript. Y.A.A. supervised the study. The authorship order of the two cofirst authors was determined based on differing roles in conceptualization of the study and manuscript preparation. P.O. contributed mainly though design, planning, analysis, and writing of the manuscript, while S.H. physically performed many of the experiments and performed data analysis.
Summary Deubiquitinase enzymes (DUBs) of the proteasomal 19S regulatory particle are emerging as important therapeutic targets in several malignancies. Here we demonstrate that inhibition of two proteasome-associated DUBs (USP14 and UCHL5) with the small molecule DUB inhibitor b-AP15, results in apoptosis of human Waldenström macroglobulinaemia (WM) cell lines and primary patient-derived WM tumour cells. Importantly, b-AP15 produced proteotoxic stress and apoptosis in WM cells that have acquired resistance to the proteasome inhibitor bortezomib. In silico modelling identified protein residues that were critical for the binding of b-AP15 with USP14 or UCHL5 and proteasome enzyme activity assays confirmed that b-AP15 does not affect the proteolytic capabilities of the 20S proteasome β-subunits. In vitro toxicity from b-AP15 appeared to result from a build-up of ubiquitinated proteins and activation of the endoplasmic reticulum stress response in WM cells, an effect that also disrupted the mitochondria. Focused transcriptome profiling of b-AP15-treated WM cells revealed modulation of several genes regulating cell stress and NF-κB signalling, the latter whose protein translocation and downstream target activation was reduced by b-AP15 in vitro. This is the first report to define the effects and underlying mechanisms associated with inhibition of USP14 and UCHL5 DUB activity in WM tumour cells.
Current advances in combined anti-retroviral therapy (cART) have rendered HIV infection a chronic, manageable disease; however, the problem of persistent immune activation still remains despite treatment. The immune cell receptor SLAMF7 has been shown to be upregulated in diseases characterized by chronic immune activation. Here, we studied the function of the SLAMF7 receptor in immune cells of HIV patients and the impacts of SLAMF7 signaling on peripheral immune activation. We observed increased frequencies of SLAMF7+ PBMCs in HIV+ individuals in a clinical phenotype-dependent manner, with discordant and long-term nonprogressor patients showing elevated SLAMF7 levels, and elite controllers showing levels comparable to healthy controls. We also noted that SLAMF7 was sensitive to IFN⍺ stimulation; a factor elevated during HIV infection. Further studies revealed SLAMF7 to be a potent inhibitor of the monocyte-derived proinflammatory chemokine CXCL10 (IP-10) and other CXCR3 ligands, except in a subset of HIV+ patients termed SLAMF7 silent (SF7S). Studies utilizing small molecule inhibitors revealed that the mechanism of CXCL10 inhibition is independent of known SLAMF7 binding partners. Furthermore, we determined that SLAMF7 activation on monocytes is able to decrease their susceptibility to HIV-1 infection in vitro via down-regulation of CCR5 and up-regulation of the CCL3L1 chemokine. Finally, we discovered that neutrophils do not express SLAMF7, are CXCL10+ at baseline, are able to secrete CXCL10 in response to IFN⍺ and LPS, and are non-responsive to SLAMF7 signaling. These findings implicate the SLAMF7 receptor as an important regulator of IFN⍺-driven innate immune responses during HIV infection.
Although ibrutinib is highly effective in Waldenstrom macroglobulinemia (WM), no complete remissions in WM patients treated with ibrutinib have been reported to date. Moreover, ibrutinib-resistant disease is being steadily reported and is associated with dismal clinical outcome (overall survival of 2.9–3.1 months). To understand mechanisms of ibrutinib resistance in WM, we established ibrutinib-resistant in vitro models using validated WM cell lines. Characterization of these models revealed the absence of BTKC481S and CXCR4WHIM-like mutations. BTK-mediated signaling was found to be highly attenuated accompanied by a shift in PI3K/AKT and apoptosis regulation-associated genes/proteins. Cytotoxicity studies using the AKT inhibitor, MK2206±ibrutinib, and the Bcl-2-specific inhibitor, venetoclax±ibrutinib, demonstrated synergistic loss of cell viability when either MK22016 or venetoclax were used in combination with ibrutinib. Our findings demonstrate that induction of ibrutinib resistance in WM cells can arise independent of BTKC481S and CXCR4WHIM-like mutations and sustained pressure from ibrutinib appears to activate compensatory AKT signaling as well as reshuffling of Bcl-2 family proteins for maintenance of cell survival. Combination treatment demonstrated greater (and synergistic) antitumor effect and provides rationale for development of therapeutic strategies encompassing venetoclax+ibrutinib or PI3K/AKT inhibitors+ibrutinib in ibrutinib-resistant WM.
Ankylosing spondylitis (AS) is a prototypical sero-negative autoimmune disease that affects millions worldwide. Single nucleotide polymorphisms in the Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) gene have been linked to AS via GWAS studies, however, the exact mechanism as to how ERAP1 contributes to pathogenesis of AS is not understood. We undertook µCT imaging and histologic analysis to evaluate bone morphology of the axial skeletons of ERAP1−/− mice and discovered the hallmark skeletal features of AS in these mice, including spinal ankylosis, osteoporosis, and spinal inflammation. We also confirmed the presence of spontaneous intestinal dysbiosis and increased susceptibility to Dextran Sodium Sulfate (DSS)-induced colitis in ERAP1−/− mice, however the transfer of healthy microbiota from wild type mice via cross-fostering experiments did not resolve the skeletal phenotypes of ERAP1−/− mice. Immunological analysis demonstrated that while ERAP1−/− mice had normal numbers of peripheral Foxp3+ Tregs, they had reduced numbers of both “Tr1-like” regulatory T cells and tolerogenic dendritic cells, which are important for Tr1 cell differentiation. Together, our data suggests that ERAP1−/− mice may serve as a useful animal model for studying pathogenesis of intestinal, skeletal, and immunological manifestations of Ankylosing Spondylitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.