Herein, we report the design of a focused library of novel bacterial topoisomerase inhibitors (NBTIs) based on innovative mainly monocyclic right-hand side fragments active against DNA gyrase and Topo IV. They exhibit a very potent and wide range of antibacterial activity, even against some of the most concerning hard-to-treat pathogens for which new antibacterials are urgently needed, as reported by the WHO and CDC. NBTIs enzyme activity and whole cell potency seems to depend on the fine-tuned lipophilicity/hydrophilicity ratio that governs the permeability of those compounds through the bacterial membranes. Lipophilicity of NBTIs is apparently optimal for passing through the membrane of Gram-positive bacteria, but the higher, although not excessive lipophilicity and suitable hydrophilicity seems to determine the passage through Gram-negative bacterial membranes. However, due to the considerable hERG inhibition, which is still at least two orders of magnitude away from MICs, continued optimization is required to realize their full potential.
We designed and synthesized
an optimized library of novel bacterial
topoisomerase inhibitors with
p
-halogenated phenyl
right-hand side fragments and significantly enhanced and balanced
dual-targeted DNA gyrase and topoisomerase IV activities of
Staphylococcus aureus
and
Escherichia coli
. By increasing the electron-withdrawing properties of the
p
-halogenated phenyl right-hand side fragment and maintaining
a similar lipophilicity and size, an increased potency was achieved,
indicating that the antibacterial activities of this series of novel
bacterial topoisomerase inhibitors against all target enzymes are
determined by halogen-bonding rather than van der Waals interactions.
They show nanomolar enzyme inhibitory and whole-cell antibacterial
activities against
S. aureus
and methicillin-resistant
S. aureus
(MRSA) strains. However, due to the relatively
high substrate specificity for the bacterial efflux pumps, they tend
to be less potent against
E. coli
and other Gram-negative
pathogens.
The continued emergence
of bacterial resistance has created an
urgent need for new and effective antibacterial agents. Bacterial
type II topoisomerases, such as DNA gyrase and topoisomerase IV (topoIV),
are well-validated targets for antibacterial chemotherapy. The novel
bacterial topoisomerase inhibitors (NBTIs) represent one of the new
promising classes of antibacterial agents. They can inhibit both of
these bacterial targets; however, their potencies differ on the targets
among species, making topoIV probably a primary target of NBTIs in
Gram-negative bacteria. Therefore, it is important to gain an insight
into the NBTIs key structural features that govern the topoIV inhibition.
However, in Gram-positive bacteria, topoIV is also a significant target
for achieving dual-targeting, which in turn contributes to avoiding
bacterial resistance caused by single-target mutations. In this perspective,
we address the structure–activity relationship guidelines for
NBTIs that target the topoIV enzyme in Gram-positive and Gram-negative
bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.