This review article shows that coagulase-negative staphylococci (CoNS) are widely responsible for laryngological diseases. General characteristics of CoNS infections are shown in the introduction, and the pathogenicity in terms of virulence determinants, biofilm formation and genetic regulation mechanisms of these bacteria is presented in the first part of the paper to better display the virulence potential of staphylococci. The PubMed search keywords were as follows: CoNS and: nares infections, nasal polyps, rhinosinusitis, necrosing sinusitis, periprosthetic joint infection, pharyngitis, osteomyelitis of skull and neck bones, tonsillitis and recurrent tonsillitis. A list of laryngological infections and those related to skull and neck bones was presented with descriptions of the following diseases: rhinosinusitis, necrotizing sinusitis, nasal polyps, nares and nasal skin infections, periprosthetic joint infections, osteomyelitis, pharyngitis, and tonsillitis. Species identification and diagnostic problems challenging for diagnosticians are presented. Concluding remarks regarding the presence of CoNS in humans and their distribution, particularly under the effect of facilitating factors, are mentioned.
The oral cavity may comprise a significant reservoir for Staphylococcus aureus but the data on molecular epidemiology and clonal distribution of oral strains are really scarce. This study aimed to evaluate the clonal relatedness in S. aureus isolated from oral cavity and their relationship with carriage of virulence genes, and antimicrobial resistance profiles. A total of 139 oral S. aureus isolates were obtained from 2327 analysed oral samples of dental patients. Antimicrobial susceptibility testing was performed. Isolates were characterized using protein A gene (spa) typing, spa-CC clonal complexes, toxin genes and SCCmec typing for MRSA. High resistance rates for penicillin, tetracycline and gentamicin were detected, respectively 58.3%, 42.4%, and 35.2%. Twelve (8.6%) S. aureus isolates were identified as MRSA. All of MRSA isolates were mecA-positive and mecC-negative. SCCmec IV was the most common type (66.7%), which was typical for community-acquired MRSA (CA-MRSA). Overall, the enterotoxin gene cluster (egc) was the most frequent detected virulence factor (44.9%), both in MSSA and MRSA isolates. Presence of genes encoding for the enterotoxins (sea, seb, sec, seh, sek), exfoliative toxin A (eta), and toxic shock syndrome toxin-1 (tst) was also observed. Strains carrying lukS-PV/lukF-PV genes belonged to SCCmecV- spa type t437. The most prevalent spa types were t091, t015, t084, t002, t571, and t026 among all 57 identified. Spa types, including 3 new ones, grouped in 6 different spa-CC clonal complexes, with four major dominated; CC45, CC30, CC5, and CC15. This study demonstrated that both methicillin-susceptible and methicillin-resistant major European clones of S. aureus could be isolated from the oral cavity of dental patients, with the emergence of PVL-positive CA-MRSA strains. The oral cavity should be considered as a possible source of toxigenic egc-positive S. aureus strains, in terms of potential risk of cross-infection and dissemination to other body sites.
The aim of current study was to examine clonal structure and genetic profile of invasive Staphylococcus aureus isolates recovered from infants and children treated at the Jagiellonian University Children’s Hospital of Krakow, Poland. The 107 invasive S. aureus isolates, collected between February 2012 and August 2014, were analysed retrospectively. Antimicrobial susceptibility testing, spa typing and DNA microarray analysis were performed to determine clonal distribution, diversity and gene content in regard to patients characteristics. In total, 107 isolates were recovered from 88 patients with clinical symptoms of invasive bacterial infection. The final set of 92 non-duplicate samples included 38 MRSA isolates. Additionally, a set of 54 S. aureus isolates collected during epidemiological screening was genotyped and analysed. There were 72 healthcare-associated (HCA) and 20 community-onset (CO) infection events caused by 33 and 5 MRSA isolates, respectively. The majority of isolates were affiliated with the major European clonal complexes CC5 (t003, spa-CC 002), CC45 (spa-CC 015), CC7 or CC15 (t084, t091, spa-CC 084). Two epidemic clones (CC5-MRSA-II or CC45-MRSA-IV) dominated among MRSA isolates, while MSSA population contained 15 different CCs. The epidemiological screening isolates belonged to similar genetic lineages as those collected from invasive infection cases. The HCA infection events, spa types t003, t2642 or CC5 were significantly associated with infections occurring in neonates and children under 5 years of age. Moreover, carriage of several genetic markers, including erm(A), sea (N315), egc-cluster, chp was significantly higher in isolates obtained from children in this age group. The spa types t091 and t008 were underrepresented among patients aged 5 years or younger, whereas spa type t008, CC8 and presence of splE was associated with infection in children aged 10 years or older. The HCA-MRSA strains were most frequently found in children under 5 years, although the majority of invasive infections was associated with MSSA strains. Moreover, an association between age group of children from the study population and a specific strain genotype (spa type, clonal complex or genetic content) was observed among the patients.
Coagulase-negative staphylococci, ubiquitous commensals of human skin, and mucous membranes represent important pathogens for immunocompromised patients and neonates. The increasing antibiotic resistance among Staphylococcus epidermidis is an emerging problem worldwide. In particular, the linezolid-resistant S. epidermidis (LRSE) strains are observed in Europe since 2014. The aim of our study was to genetically characterize 11 LRSE isolates, recovered mostly from blood in the University Children's Hospital in Krakow, Poland, between 2015 and 2017. For identification of the isolates at the species level, we used 16S rRNA sequencing and RFLP of the saoC gene. Isolates were characterized phenotypically by determining their antimicrobial resistance patterns and using molecular methods such as PFGE, MLST, SCCmec typing, detection of the ica operon, and analysis of antimicrobial resistance determinants. All isolates were multidrug-resistant, including resistance to methicillin, and exhibited so-called PhLOPS A phenotype. In PFGE, all isolates (excluding one from a catheter) represented identical patterns, were identified as ST2, and harbored the ica operon, responsible for biofilm formation. Linezolid resistance was associated with acquisition of A157R mutation in the ribosomal protein L3 and the presence of cfr gene. All isolates revealed new SCCmec cassette element composition. Recently, pediatric patients with serious staphylococcal infections are often treated with linezolid. The increasing linezolid resistance in bacterial strains becomes a real threat for patients, and monitoring such infections combined with surveillance and infection prevention programs is very important to decrease number of linezolid-resistant staphylococcal strains.
Many members of the Staphylococcus genus are clinically relevant opportunistic pathogens that warrant accurate and rapid identification for targeted therapy. The aim of this study was to develop a careful assignment scheme for staphylococcal species based on next-generation sequencing (NGS) of the 16S-23S rRNA region. All reference staphylococcal strains were identified at the species level using Sanger sequencing of the 16S rRNA , sodA, tuf , and rpoB genes and NGS of the 16S-23S rRNA region. To broaden the database, an additional 100 staphylococcal strains, including 29 species, were identified by routine diagnostic methods, 16S rRNA Sanger sequencing and NGS of the 16S-23S rRNA region. The results enabled development of reference sequences encompassing the 16S-23S rRNA region for 50 species (including one newly proposed species) and 6 subspecies of the Staphylococcus genus. This study showed sodA and rpoB targets were the most discriminative but NGS of the 16S-23S rRNA region was more discriminative than tuf gene sequencing and much more discriminative than 16S rRNA gene sequencing. Almost all Staphylococcus species could be distinguished when the max score was 99.0% or higher and the sequence similarity between the best and second best species was equal to or >0.2% (min. 9 nucleotides). This study allowed development of reference sequences for 21 staphylococcal species and enrichment for 29 species for which sequences were publicly available. We confirmed the usefulness of NGS of the 16S-23S rRNA region by identifying the whole species content in 45 clinical samples and comparing the results to those obtained using routine diagnostic methods. Based on the developed reference database, all staphylococcal species can be reliably detected based on the 16S-23S rRNA sequences in samples composed of both single species and more complex polymicrobial communities. This study will be useful for introduction of a novel diagnostic tool, which undoubtedly is an improvement for reliable species identification in polymicrobial samples. The introduction of this new method is hindered by a lack of reference sequences for the 16S-23S rRNA region for many bacterial species. The results will allow identification of all Staphylococcus species, which are clinically relevant pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.