The content of these European Society of Cardiology (ESC) Guidelines has been published for personal and educational use only. No commercial use is authorized. No part of the ESC Guidelines may be translated or reproduced in any form without written permission from the ESC. Permission can be obtained upon submission of a written request to Oxford University Press, the publisher of the European Heart Journal and the party authorized to handle such permissions on behalf of the ESC. Disclaimer. The ESC Guidelines represent the views of the ESC and were produced after careful consideration of the scientific and medical knowledge and the evidence available at the time of their publication. The ESC is not responsible in the event of any contradiction, discrepancy and/or ambiguity between the ESC Guidelines and any other official recommendations or guidelines issued by the relevant public health authorities, in particular in relation to good use of healthcare or therapeutic strategies. Health professionals are encouraged to take the ESC Guidelines fully into account when exercising their clinical judgment, as well as in the determination and the implementation of preventive, diagnostic or therapeutic medical strategies; however, the ESC Guidelines do not override, in any way whatsoever, the individual responsibility of health professionals to make appropriate and accurate decisions in consideration of each patient's health condition and in consultation with that patient and, where appropriate and/or necessary, the patient's caregiver. Nor do the ESC Guidelines exempt health professionals from taking into full and careful consideration the relevant official updated recommendations or guidelines issued by the competent public health authorities, in order to manage each patient's case in light of the scientifically accepted data pursuant to their respective ethical and professional obligations. It is also the health professional's responsibility to verify the applicable rules and regulations relating to drugs and medical devices at the time of prescription.
Electrocardiographic measures are indicative of the function of the cardiac conduction system. To search for sequence variants that modulate heart rate, PR interval and QRS duration in individuals of European descent, we performed a genome-wide association study in approximately 10,000 individuals and followed up the top signals in an additional approximately 10,000 individuals. We identified several genome-wide significant associations (with P < 1.6 x 10(-7)). We identified one locus for heart rate (MYH6), four for PR interval (TBX5, SCN10A, CAV1 and ARHGAP24) and four for QRS duration (TBX5, SCN10A, 6p21 and 10q21). We tested for association between these loci and subjects with selected arrhythmias in Icelandic and Norwegian case-control sample sets. We observed correlations between TBX5 and CAV1 and atrial fibrillation (P = 4.0 x 10(-5) and P = 0.00032, respectively), between TBX5 and advanced atrioventricular block (P = 0.0067), and between SCN10A and pacemaker implantation (P = 0.0029). We also replicated previously described associations with the QT interval.
Blood lipid levels are heritable, treatable risk factors for cardiovascular disease. We systematically assessed genome-wide coding variation to identify novel lipid genes, fine-map known lipid loci, and evaluate whether low frequency variants with large effect exist. Using an exome array, we genotyped 80,137 coding variants in 5,643 Norwegians. We followed up 18 variants in 4,666 Norwegians to identify 10 loci with coding variants associated with a lipid trait (P < 5×10−8). One coding variant in TM6SF2 (p.Glu167Lys), residing in a GWAS locus for lipid levels, modifies total cholesterol levels and is associated with myocardial infarction. Transient overexpression and knockdown of TM6SF2 in mouse produces alteration in serum lipid profiles consistent with the association observed in humans, identifying TM6SF2 as the functional gene at a large GWAS locus previously known as NCAN/CILP2/PBX4 or 19p13. This study demonstrates that systematic assessment of coding variation can quickly point to a candidate causal gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.