Acquisition of planar cell polarity (PCP) in epithelia involves intercellular communication, during which cells align their polarity with that of their neighbors. The transmembrane proteins Frizzled (Fz) and Van Gogh (Vang) are essential components of the intercellular communication mechanism, as loss of either strongly perturbs the polarity of neighboring cells. How Fz and Vang communicate polarity information between neighboring cells is poorly understood. The atypical cadherin, Flamingo (Fmi), is implicated in this process, yet whether Fmi acts permissively as a scaffold or instructively as a signal is unclear. Here, we provide evidence that Fmi functions instructively to mediate Fz-Vang intercellular signal relay, recruiting Fz and Vang to opposite sides of cell boundaries. We propose that two functional forms of Fmi, one of which is induced by and physically interacts with Fz, bind each other to create cadherin homodimers that signal bidirectionally and asymmetrically, instructing unequal responses in adjacent cell membranes to establish molecular asymmetry.
Planar cell polarity (PCP) signaling controls the polarization of cells within the plane of an epithelium. Two molecular modules composed of Fat(Ft)/Dachsous(Ds)/Four-jointed(Fj) and a ‘PCP-core’ including Frizzled(Fz) and Dishevelled(Dsh) contribute to polarization of individual cells. How polarity is globally coordinated with tissue axes is unresolved. Consistent with previous results, we find that the Ft/Ds/Fj-module has an effect on a MT-cytoskeleton. Here, we provide evidence for the model that the Ft/Ds/Fj-module provides directional information to the core-module through this MT organizing function. We show Ft/Ds/Fj-dependent initial polarization of the apical MT-cytoskeleton prior to global alignment of the core-module, reveal that the anchoring of apical non-centrosomal MTs at apical junctions is polarized, observe that directional trafficking of vesicles containing Dsh depends on Ft, and demonstrate the feasibility of this model by mathematical simulation. Together, these results support the hypothesis that Ft/Ds/Fj provides a signal to orient core PCP function via MT polarization.DOI: http://dx.doi.org/10.7554/eLife.02893.001
Planar cell polarity (PCP) in epithelia, orthogonal to the apical–basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations.
Microtubules (MTs) are substrates upon which plus-and minus-end directed motors control the directional movement of cargos that are essential for generating cell polarity. Although centrosomal MTs are organized with plus-ends away from the MT organizing center, the regulation of non-centrosomal MT polarity is poorly understood. Increasing evidence supports the model that directional information for planar polarization is derived from the alignment of a parallel apical network of MTs and the directional MT-dependent trafficking of downstream signaling components. The Fat/Dachsous/Fourjointed (Ft/Ds/Fj) signaling system contributes to orienting those MTs. In addition to previously defined functions in promoting asymmetric subcellular localization of 'core' planar cell polarity (PCP) proteins, we find that alternative Prickle (Pk-Sple) protein isoforms control the polarity of this MT network. This function allows the isoforms of Pk-Sple to differentially determine the direction in which asymmetry is established and therefore, ultimately, the direction of tissue polarity. Oppositely oriented signals that are encoded by oppositely oriented Fj and Ds gradients produce the same polarity outcome in different tissues or compartments, and the tissue-specific activity of alternative Pk-Sple protein isoforms has been observed to rectify the interpretation of opposite upstream directional signals. The control of MT polarity, and thus the directionality of apical vesicle traffic, by Pk-Sple provides a mechanism for this rectification.
Coordinated rearrangements of cytoskeletal structures are the principal source of forces that govern cell and tissue morphogenesis. However, unlike for actin-based mechanical forces, our knowledge about the contribution of forces originating from other cytoskeletal components remains scarce. Here, we establish microtubules as central components of cell mechanics during tissue morphogenesis. We find that individual cells are mechanically autonomous during early Drosophila wing epithelium development. Each cell contains a polarized apical non-centrosomal microtubule cytoskeleton that bears compressive forces, whereby acute elimination of microtubule-based forces leads to cell shortening. We further establish that the Fat planar cell polarity (Ft-PCP) signalling pathway couples microtubules at adherens junctions (AJs) and patterns microtubule-based forces across a tissue via polarized transcellular stability, thus revealing a molecular mechanism bridging single cell and tissue mechanics. Together, these results provide a physical basis to explain how global patterning of microtubules controls cell mechanics to coordinate collective cell behaviour during tissue remodelling. These results also offer alternative paradigms towards the interplay of contractile and protrusive cytoskeletal forces at the single cell and tissue levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.