Over
the last 100–120 years, due to the ever-increasing
importance of fluorine-containing compounds in modern technology and
daily life, the explosive development of the fluorochemical industry
led to an enormous increase of emission of fluoride ions into the
biosphere. This made it more and more important to understand the
biological activities, metabolism, degradation, and possible environmental
hazards of such substances. This comprehensive and critical review
focuses on the effects of fluoride ions and organofluorine compounds
(mainly pharmaceuticals and agrochemicals) on human health and the
environment. To give a better overview, various connected topics are
also discussed: reasons and trends of the advance of fluorine-containing
pharmaceuticals and agrochemicals, metabolism of fluorinated drugs,
withdrawn fluorinated drugs, natural sources of organic and inorganic
fluorine compounds in the environment (including the biosphere), sources
of fluoride intake, and finally biomarkers of fluoride exposure.
The dissolution of upconverting AYF4:Yb,Tm (A = Na or K) nanoparticles (UCNPs) in aqueous media was systematically studied. UCNPs with a cubic structure and sizes of between 10 and 33 nm were synthesized solvothermally in ethylene glycol at 200 °C. The UCNPs of both compositions showed an upconversion fluorescence emission characteristic of Tm(3+). The effects of the A cation, the particle size, the temperature, the pH, and the composition of the aqueous medium on the dissolution of the UCNPs were evaluated. The degree of dissolution was determined from the fraction of dissolved fluoride (F(-)) using potentiometry. Unexpectedly, the composition of aqueous media had the most significant effect on the dissolution of the UCNPs. The highest degree of dissolution and rate were measured for the phosphate-buffered saline (PBS), which can be explained by the formation of stable lanthanide compounds with phosphates. The degree of dissolution was much lower in water and in the phthalate buffer, which was attributed to the release of F(-) as a result of the hydrolysis of the UCNPs' surfaces.
In a proof-of-concept study, we assessed different analytical and spectroscopic parameters for stability screening of differently sized β-NaYF:20 mol % Yb, 2 mol % Tm upconversion nanoparticles (UCNPs) exemplarily in the bioanalytically relevant buffer phosphate buffered saline (PBS; pH 7.4) at 37 and 50 °C. This included the potentiometric determination of the amount of released fluoride ions, surface analysis with X-ray photoelectron spectroscopy (XPS), and steady-state and time-resolved fluorescence measurements. Based on these results, the luminescence lifetime of the 800 nm upconversion emission was identified as an optimum parameter for stability screening of UCNPs and changes in particle surface chemistry.
Upconverting nanoparticles (UCNPs) of β-NaYF, co-doped with Yb and Tm and 21-36 nm large, were synthesized using a modified thermal decomposition method. The as-synthesized UCNPs were coated with oleic acid and dispersed in nonpolar media. Their morphology, size and crystal structure were analysed with transmission electron microscopy and X-ray diffraction. The UCNPs showed a fluorescence emission spectrum characteristic of Tm. Their dissolution in water (pH ∼ 4-5) and phosphate buffered saline (PBS, pH = 7.4) was determined from the fraction of dissolved fluoride ions using a fluoride-ion-selective electrode. The dissolution of bare UCNPs was much more prominent in PBS than in water. Two amphiphilic coatings, poly(maleic anhydride-alt-1-octadecene)-bis(hexamethylene)triamine (PMAO-BHMT) and d-α-tocopheryl polyethylene glycol succinate (TPGS) were tested for their effects on the dissolution of the UCNPs. The coatings were formed directly on the as-synthesized UCNPs as was confirmed with electrokinetic measurements, infrared spectroscopy and thermogravimetric analyses. Both coatings enabled the dispersion of UCNPs in water, and improved the fluorescence emission intensity with respect to the bare UCNPs. However, only the PMAO-BHMT coating provided an effective protection against the dissolution of the UCNPs and long-term colloidal stability in PBS, and did not show cytotoxicity in EAhy926 endothelial cells.
The partial dissolution of selected nanoparticles (NaYF4, LaF3 and GdF3) co-doped with Yb3+ and Tm3+ was detected and compared with respect to their size, chemical composition and structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.