Fine structural details of glycans attached to the conserved N-glycosylation site significantly not only affect function of individual immunoglobulin G (IgG) molecules but also mediate inflammation at the systemic level. By analyzing IgG glycosylation in 5,117 individuals from four European populations, we have revealed very complex patterns of changes in IgG glycosylation with age. Several IgG glycans (including FA2B, FA2G2, and FA2BG2) changed considerably with age and the combination of these three glycans can explain up to 58% of variance in chronological age, significantly more than other markers of biological age like telomere lengths. The remaining variance in these glycans strongly correlated with physiological parameters associated with biological age. Thus, IgG glycosylation appears to be closely linked with both chronological and biological ages. Considering the important role of IgG glycans in inflammation, and because the observed changes with age promote inflammation, changes in IgG glycosylation also seem to represent a factor contributing to aging.Significance StatementGlycosylation is the key posttranslational mechanism that regulates function of immunoglobulins, with multiple systemic repercussions to the immune system. Our study of IgG glycosylation in 5,117 individuals from four European populations has revealed very extensive and complex changes in IgG glycosylation with age. The combined index composed of only three glycans explained up to 58% of variance in age, considerably more than other biomarkers of age like telomere lengths. The remaining variance in these glycans strongly correlated with physiological parameters associated with biological age; thus, IgG glycosylation appears to be closely linked with both chronological and biological ages. The ability to measure human biological aging using molecular profiling has practical applications for diverse fields such as disease prevention and treatment, or forensics.
Age and sex dependence of subclass specific immunoglobulin G (IgG) Fc N-glycosylation was evaluated for 1709 individuals from two isolated human populations. IgGs were obtained from plasma by affinity purification using 96-well protein G monolithic plates and digested with trypsin. Fc Nglycopeptides were purified and analyzed by negative-mode MALDI-TOF-MS with 4-chloro-α-cyanocinnamic acid (Cl-CCA) matrix. Age-associated glycosylation changes were more pronounced in younger individuals (<57 years) than in older individuals (>57 years) and in females than in males. Galactosylation and sialylation decreased with increasing age and showed significant sex dependence. Interestingly, the most prominent drop in the levels of galactosylated and sialylated glycoforms in females was observed around the age of 45 to 60 years when females usually enter menopause. The incidence of bisecting N-acetylglucosamine increased in younger individuals and reached a plateau at older age. Furthermore, we compared the results to the total IgG N-glycosylation of the same populations recently analyzed by hydrophilic interaction liquid chromatography (HILIC). Significant differences were observed in the levels of galactosylation, bisecting N-acetylglucosamine and particularly sialylation, which were shown to be higher in HILIC analysis. Age and sex association of glycosylation features was, to a large extent, comparable between MALDI-TOF-MS and HILIC IgG glycosylation profiling.
ObjectiveGlycans attached to the Fc portion of IgG are important modulators of IgG effector functions. Interindividual differences in IgG glycome composition are large and they associate strongly with different inflammatory and autoimmune diseases. IKZF1, HLA–DQ2A/B, and BACH2 genetic loci that affect IgG glycome composition show pleiotropy with systemic lupus erythematosus (SLE), indicating a potentially causative role of aberrant IgG glycosylation in SLE. We undertook this large multicenter case–control study to determine whether SLE is associated with altered IgG glycosylation.MethodsUsing ultra‐performance liquid chromatography analysis of released glycans, we analyzed the composition of the IgG glycome in 261 SLE patients and 247 matched controls of Latin American Mestizo origin (the discovery cohort) and in 2 independent replication cohorts of different ethnicity (108 SLE patients and 193 controls from Trinidad, and 106 SLE patients and 105 controls from China).ResultsMultiple statistically significant differences in IgG glycome composition were observed between patients and controls. The most significant changes included decreased galactosylation and sialylation of IgG (which regulate proinflammatory and antiinflammatory actions of IgG) as well as decreased core fucose and increased bisecting N‐acetylglucosamine (which affect antibody‐dependent cell‐mediated cytotoxicity).ConclusionThe IgG glycome in SLE patients is significantly altered in a way that decreases immunosuppressive action of circulating immunoglobulins. The magnitude of observed changes is associated with the intensity of the disease, indicating that aberrant IgG glycome composition or changes in IgG glycosylation may be an important molecular mechanism in SLE.
Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using paired genetic and epigenetic data, we delineate methylation quantitative trait loci; VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium with a known IBD susceptibility variant. Separated cell data shows that IBD-associated hypermethylation within the TXK promoter region negatively correlates with gene expression in whole-blood and CD8+ T cells, but not other cell types. Thus, site-specific DNA methylation changes in IBD relate to underlying genotype and associate with cell-specific alteration in gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.